
1768 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

YOGA: Adaptive Layer-Wise Model Aggregation
for Decentralized Federated Learning

Jun Liu , Jianchun Liu , Member, IEEE, ACM, Hongli Xu , Member, IEEE,
Yunming Liao , Zhiyuan Wang , and Qianpiao Ma

Abstract— Traditional Federated Learning (FL) is a promising
paradigm that enables massive edge clients to collaboratively
train deep neural network (DNN) models without exposing raw
data to the parameter server (PS). To avoid the bottleneck on
the PS, Decentralized Federated Learning (DFL), which utilizes
peer-to-peer (P2P) communication without maintaining a global
model, has been proposed. Nevertheless, DFL still faces two
critical challenges, i.e., limited communication bandwidth and
not independent and identically distributed (non-IID) local data,
thus hindering efficient model training. Existing works commonly
assume full model aggregation at periodic intervals, i.e., clients
periodically collect models from peers. To reduce the communi-
cation cost, these methods allow clients to collect model(s) from
selected peers, but often result in a significant degradation of
model accuracy when dealing with non-IID data. Alternatively,
the layer-wise aggregation mechanism has been proposed to alle-
viate communication overhead under the PS architecture, but its
potential in DFL remains rarely explored yet. To this end, we pro-
pose an efficient DFL framework YOGA that adaptively performs
layer-wise model aggregation and training. Specifically, YOGA
first generates the ranking of layers in the model according to
the learning speed and layer-wise divergence. Combining with the
layer ranking and peers’ status information (i.e., data distribution
and communication capability), we propose the max-match (MM)
algorithm to generate the proper layer-wise model aggregation
policy for the clients. Extensive experiments on DNN models and
datasets show that YOGA saves communication cost by about
45% without sacrificing the model performance compared with
the baselines, and provides 1.53-3.5× speedup on the physical
platform.

Index Terms— Decentralized federated learning, edge comput-
ing, heterogeneity, layer-wise aggregation.

Manuscript received 24 June 2023; revised 7 October 2023; accepted
27 October 2023; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor G. Fanti. Date of publication 6 November 2023; date of current
version 18 April 2024. This work was supported in part by the National Key
Research and Development Program of China under Grant 2021YFB3301501;
in part by the National Science Foundation of China (NSFC) under Grant
61936015, Grant 62132019, and Grant 62102391; in part by the Jiangsu
Province Science Foundation for Youths under Grant BK20210122 and Grant
BK20230275; and in part by Xiaomi Young Talents Program. (Corresponding
authors: Jianchun Liu; Hongli Xu.)

Jun Liu, Jianchun Liu, Hongli Xu, Yunming Liao, and Zhiyuan Wang are
with the School of Computer Science and Technology, University of Science
and Technology of China, Hefei, Anhui 230027, China, and also with the
Suzhou Institute for Advanced Research, University of Science and Techno-
logy of China, Suzhou, Jiangsu 215123, China (e-mail: lj18090759057@
mail.ustc.edu.cn; jcliu17@ustc.edu.cn; xuhongli@ustc.edu.cn; liaoyun@mail.
ustc.edu.cn; cswangzy@mail.ustc.edu.cn).

Qianpiao Ma is with the Purple Mountain Laboratories, Nanjing 210000,
China (e-mail: maqianpiao@pmlabs.com.cn).

Digital Object Identifier 10.1109/TNET.2023.3329005

I. INTRODUCTION

THE emergence of the Internet of Things (IoTs) has
led to a surge in generating of large amounts of data

from ubiquitous devices, promoting the application of artifi-
cial intelligence (AI) [1], [2]. Traditional Federated Learning
(FL) [3] enables a mass of edge clients to collaboratively train
a model without sharing their data with the central server.
Since only the models are required to be transmitted between
the server and edge clients, FL can effectively safeguard user
privacy.

The traditional FL relies on a parameter server (PS) to
periodically receive/send the updated models from/to the
local clients. However, the PS may become a bottleneck
for training due to network congestion and pose secu-
rity risks if compromised [4]. To overcome the problem
of PS-based architecture, Decentralized Federated Learning
(DFL) [5], which enables the clients to collaborate and learn
from each other by exchanging model parameters directly,
has been proposed. Since DFL does not require forwarding
local models from clients to a central server, it eliminates the
potential for a single point of failure or network congestion
on the PS, thereby accelerating the training process.

Although DFL has demonstrated its advantages, it still faces
the following two challenges for efficient training: (1) Limited
communication capability. In contrast to data centers with
sufficient communication resources, the available bandwidth
between clients in edge networks is often limited [3], [6].
For example, the network bandwidth within WANs averagely
ranges from 5 to 25 Mb/s [3], which is significantly lower
than that within data centers (e.g., over 10 Gb/s [7]). (2) Non-
independent and distributed (non-IID) data. As the training
data on individual clients always depends on their local envi-
ronments and user preferences, the local data distributions will
vary heavily among different clients [3]. For example, in the
context of patient monitoring, the data from different patients
demonstrates a notable level of heterogeneity stemming from
a range of factors such as diverse human biological features,
varying physical environments, and even sensor biases [8]. The
non-IID data will significantly degenerate the convergence rate
and even degrade the accuracy of trained models [2], [9] [10].

In the traditional DFL scheme, e.g., D-PSGD [11], each
client collects full models from all connected peers for model
aggregation. However, this natural solution may result in

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 11,2024 at 16:18:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0009-0003-0701-1861
https://orcid.org/0000-0002-1764-9303
https://orcid.org/0000-0003-3831-4577
https://orcid.org/0000-0002-5065-2600
https://orcid.org/0000-0002-5368-1132
https://orcid.org/0000-0001-8684-3495

LIU et al.: YOGA: ADAPTIVE LAYER-WISE MODEL AGGREGATION FOR DFL 1769

excessive traffic among clients, which will cause significant
communication delays. To address the aforementioned chal-
lenges, existing works [12], [13], [14], [15] carefully select
peers, also called peer selection, based on data distribu-
tion or link speed to facilitate model convergence. In [12],
Kong et al. identify that a large consensus distance (correlated
to data distribution) is beneficial for decentralized training.
In [13], Wang et al. propose CoCo to preferentially select peers
with large divergence in data distribution to overcome the
challenge of non-IID data. However, the communication delay
in each round always depends on the slowest link, resulting in
a long communication time and slow convergence speed. As a
special case, some works [14], [15] allow each client to select
only one peer for model aggregation to mitigate the impact
of low-speed links and accelerate the training process. For
example, NetMax [15] selects a peer with the highest-speed
link to perform model aggregation. However, if a client has
extremely high bandwidth and its peers choose to aggregate
the model through the highest-speed link, it will lead to
deviation from the global optimization direction. Thus, these
methods suffer from poor model convergence and performance
degradation when dealing with non-IID data [16]. In sum-
mary, the existing methods commonly assume that each client
periodically collects full model(s) from the selected peer(s),
and do not provide comprehensive solutions to address the
aforementioned challenges.

To conquer the aforementioned challenges, we propose
an efficient DFL framework, called YOGA, to adaptively
perform layer-wise model aggregation, i.e., each client collects
various layers from all connected peers for model aggregation.
At each round, YOGA first generates the ranking of layers
of each client according to the learning speed and layer-wise
divergence. Combined with the layer ranking and peers’ status
information (i.e., data distribution and communication capa-
bility), YOGA then adaptively generates the proper layer-wise
model aggregation policy for clients. Then, a client will collect
layers from its peers and rebuild a combined model for model
aggregation.

YOGA offers many advantages compared with the exist-
ing schemes. On the one hand, the bandwidth resource
of the entire system can be effectively utilized, and the
bandwidth pressure on each client is significantly alleviated.
On the other hand, YOGA can accelerate model conver-
gence and effectively cope with non-IID data. However, there
remains one key challenge in building an effective layer-wise
model aggregation framework: how to adaptively generate
a layer-wise model aggregation policy, i.e., pull the proper
subset of layers from the connected peers, for each client?
The main contributions of this paper are summarized as
follows:
• We propose an efficient DFL framework, called YOGA,

which adaptively performs layer-wise aggregation and
training to better overcome the challenges of limited
communication capability and non-IID issues. Besides,
we theoretically prove the convergence of YOGA.

• To tackle the challenges of system design, we present an
efficient algorithm, termed Max-Match, which customizes
the proper layer-wise model aggregation policy for the

clients based on data distribution and communication
capacity.

• We evaluate our proposed framework and algorithm
through extensive test-bed experiments. The results show
that YOGA provides 1.53-2.47× speedup on the physical
platform and saves communication cost by about 45%
without sacrificing the model performance compared with
the baselines.

The paper is organized as follows. Section II provides
the background and motivation for our research. Section III
presents the design of YOGA, including the framework
workflow and the proposed algorithm. Section IV provides
a theoretical analysis and demonstrates the convergence of
YOGA. Section V presents the experimental results and perfor-
mance analysis. Section VI reviews related work in the field.
Finally, Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Decentralized Federated Learning

DNN model. Modern artificial intelligence (AI) applications
typically adopt deep neural network (DNN) models, which can
achieve satisfactory model performance. Concretely, a specific
DNN model is composed of a sequence of multiple layers with
different types (e.g., convolutional layers and fully-connected
layers [17]). Let L be the number of layers of the DNN model
θ = {θ(1), θ(2), . . . , θ(L)} and |θ(l)| be the size of θ(l),∀l ∈
{1, 2, . . . , L}. Thus, the size of the whole model is denoted
as |θ| =

∑L
l=1 |θ(l)|.

Network model. For a conventional DFL system, there
is a set of edge clients V = {1, 2, . . . , N}, where |V| =
N > 1 is the number of clients. At the training stage, the
clients collaboratively train the DNN model with its local
private data by peer-to-peer (P2P) communications, i.e., each
client exchanges the model parameters with its connected
peers in a network topology. We represent the decentralized
communication topology with an undirected graph using the
adjacency matrix A ∈ RN×N . A is a symmetric doubly
matrix: (i) Aij ∈ {0, 1},∀i, j, (ii) Aij = Aji,∀i ̸= j and
Aii = 0, ∀i, (iii)

∑
j Aij = |σi|,∀i, while σi is the set of

connected peers of client i and |σi| is the cardinality of the
set. Aij = 1 indicates the presence of a physical link between
client i and client j, and vice versa.

Training procedure. Assume that model training will con-
tinue T rounds until the model convergence. At each round,
the clients perform two main steps: local training and model
aggregation. During the local model training, each client is
associated with a local loss function based on the local dataset
Di, i.e., fi(θi) = 1

|Di|
∑

ξ∈Di
Fi(θi; ξ), where θi is the model

of the client i, ξ is a batch of data samples in Di, and Fi(θi; ξ)
is the loss over ξ. In general, client i updates the local model
through stochastic gradient descent (SGD) [18] to minimize its
local objective function fi(θi). Specifically, the client updates
its local model by θ̂i = θi−η∇fi(θi), where θ̂i is the updated
local model of the client i, η is the learning rate, and ∇fi(θi)
is the gradient of the loss for the current model θi. After
local training, each client collects model(s) from the connected
(or selected) peers and then aggregates the received model(s)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 11,2024 at 16:18:11 UTC from IEEE Xplore. Restrictions apply.

1770 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

with the local model. When all clients have completed the
aggregation, the client will then perform the next round of
local training with the fresh aggregated model.

B. Layer-Wise Aggregation

The growing parameter size of DNN models poses a com-
munication challenge in edge networks. Deep learning has
evolved rapidly during the past few years. With advancements
in DNN model performance to accommodate more complex
tasks, the model size increases dramatically. For example,
AlexNet [19] contains 61M parameters, and VGG [20] con-
tains 138M parameters for image classification. Recently, the
parameter size of the DNN model has grown exponentially
(e.g., The number of parameters in a DNN surpasses hundreds
of billions [21].) In contrast, the communication capability of
clients in the edge network is strictly limited (typically band-
width is only about 5∼25Mb/s [3]). What’s worse, training
a model over federated learning requires frequent cross-client
communications, which further exacerbates the dilemma of
clients’ limited communication capability. Thus, training large
DNN models efficiently over FL requires minimizing clients’
communication overhead, particularly for DFL [11], which
involves more complex communication than centralized fed-
erated learning.

Layer-wise aggregation is a better alternative. In order
to reduce the communication cost, Lee et al. [22] propose
a layer-wise model aggregation scheme, called FedLAMA,
which finely controls the aggregation interval of layers in
PS-based FL. In [23], Ma et al. propose pFedLA, that
selectively aggregates the layers contributing more to the
model convergence while skipping the less important ones
under PS architecture. For DFL, Tang et al. have proposed
GossipFL [24], which allows clients to accelerate DFL model
training by communicating with a highly sparse model from a
single peer. Besides, Hu et al. have presented Combo [25],
a segmented gossip method designed to leverage node-to-
node bandwidth efficiently while maintaining strong training
convergence. In addition, Barbieri et al. have introduced CFL-
LS [26], a method for client-driven DNN fragment selection.
It uses a layer optimizer to rank layers based on their impact
on model quality (measured by a normalized squared gradient
of local loss) and incorporates a fairness scheme for balanced
parameter selection and enhanced performance. However, all
these aforementioned works have neither considered the con-
vergence patterns within the model (e.g., different layers of
a DNN model have distinct learning speeds and divergences)
nor addressed the impact of non-IID issue. These three obser-
vations motivate us to adopt layer-wise model aggregation
in DFL:
• Observation 1: The parameter size of layers in a model

varies dramatically [20], [27]. The parameter size of
different layers in a model is not the same, and the
difference may be orders of magnitude [20], [27].

• Observation 2: The functionality of different layers in
a DNN model is not the same [20], [23], [27]. In a
conventional DNN model, each layer serves a unique
purpose. Shallow layers are primarily responsible for

Fig. 1. The test accuracy for AlexNet on CIFAR-10 with three model
aggregation strategies.

local feature extraction, while deeper layers are designed
to extract more global features [20], [23], [27].

• Observation 3: Different layers of a DNN model have
distinct learning speeds and divergences [22], [28]. All
layers in the model have different learning speeds to
converge to the final representation and various degrees
of model discrepancy [28].

C. Impact of Non-IID Data on Layer-Wise Aggregation

A natural approach to perform layer-wise aggregation is
randomly pulling the specified layers from different peers
to form a complete model and aggregating it with the local
model. However, this naive approach may result in accuracy
degradation under non-IID setting. Our observation indicates
that the data distributions will significantly impact the con-
vergence progress and the final performance of the model
trained by layer-wise aggregation. Intuitively, by aggregating
the layers from the peers with different data distributions, the
local model on the client will learn more information about the
global data distribution, which can well deal with the non-IID
issue [29].

We further conduct a set of experiments with three model
aggregation methods (i.e., CN, FC, and FM) with similar
(Sim) and different (Dif) data distributions, corresponding to
the IID and non-IID data, to demonstrate the impact of non-
IID data. For example, CN-Sim denotes that the client only
aggregates the convolutional layers of all peers with similar
data distribution at each round. In addition, we conduct FM-
All allowing each client to receive models from all peers (both
similar and different data distributions) for comparison. The
empirical results in Fig. 1 demonstrate that:
• Aggregating layers (models) among the clients with

heterogeneous data distributions yields a discernible
improvement in model convergence speed and final
accuracy performance. For instance, training AlexNet
with CN-Dif, FC-Dif, and FM-Dif exhibits better model
convergence than CN-Sim, FC-Sim, and FM-Sim, respec-
tively. Besides, CN-Dif and FC-Dif have a similar
convergence process as FM-All, while significantly reduc-
ing the communication cost. These results indicate that
layer-wise aggregation is correlated with data distribution.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 11,2024 at 16:18:11 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: YOGA: ADAPTIVE LAYER-WISE MODEL AGGREGATION FOR DFL 1771

Fig. 2. System overview of YOGA.

Aggregating the layers from the peers with different data
distributions facilitates model convergence.

• Training with layer-wise aggregation strategy shows bet-
ter performance than full model aggregation strategy
when peers have heterogeneous data distributions, bring-
ing a significant reduction in communication cost. For
example, CN-Dif and FC-Dif show better final accuracy
performance than FM-Dif after the same number of
training rounds. CN-Dif and FC-Dif reduce the commu-
nication cost by 41% and 59% compared with FM-Dif,
respectively.

These results suggest that the layer-wise aggregation can
handle non-IID without sacrificing the model performance.
Therefore, the key challenge of layer-wise model aggregation
and training is how can we generate a proper layer-wise
aggregation policy for each client to address the non-IID issue
and fully utilize the limited communication capability?

III. DESIGN OF YOGA

A. System Overview

In this section, we give a brief introduction to our proposed
system YOGA, which mainly involves two key roles, i.e.,
the coordinator and a set of clients. In YOGA, the coordi-
nator will periodically collect the network status information
(e.g., available bandwidth and data distribution) on the clients
and generate a layer-wise aggregation policy. On receiving
the policy from the coordinator, each client pulls the specified
layers from the connected peers for model aggregation and
training. The system overview is presented in Fig. 2. The
whole process involves several training rounds until model
convergences. In each round, YOGA mainly consists of the
following steps:

Local Training. At each round, the clients perform local
training by aggregating the local model and the received layers
from the selected peers. Once the local training has finished
after a given number (e.g., T) of rounds, the clients upload the
network bandwidth (1⃝), current data distribution information

(2⃝) and the layer ranking (3⃝) to the coordinator for a further
operation (e.g., layer-wise aggregation policy generation).

Layer Ranking. According to Section II-B, it is evident
that the proficiency of different layers in a model varies
significantly. The impact of each layer on the training process
varies significantly. Therefore, YOGA ranks layers of a DNN
model based on their learning speed and discrepancy, including
the parameter size, to generate the aggregation policy.

Peer Prioritizing. Based on 1⃝ and 2⃝, YOGA priori-
tizes the client’s connected peers (4⃝). The peer with more
available bandwidth and larger data distribution differences
will be assigned a higher priority. To fully utilize the limited
communication capability and handle the non-IID issue, the
higher ranking layer (i.e., layer with a faster learning speed
or more parameters) should be preferentially pulled from the
peer with a higher priority.

Generating Aggregation policy. Combined with the peers’
priorities (5⃝) and layer ranking (6⃝), YOGA generates
layer-wise model aggregation policy for each client utiliz-
ing the max-match algorithm, which will be introduced in
Section III-D. Then YOGA sends the policy back to the client
(7⃝) to indicate layer-wise aggregation.

Performing Model Aggregation. Based on the layer-wise
aggregation policy from the coordinator, each client adap-
tively collects different layers from various peers to perform
layer-wise model aggregation. The client rebuilds a combined
model after collecting layers from peers, and performs model
aggregation. This aggregated model is used for further training
in the next round.

B. Layer Ranking

Different layers of a DNN model converge at inconsis-
tent speeds [30], [31]. For example, Brock et al. [32] have
shown that the shallow layers converge faster than the deep
layers. Previous studies mostly adopt gradient magnitude as
an indicator of model convergence, but it may not always
be a reliable measure [33]. On the one hand, small gradients
do not necessarily mean that the parameters are close to the
optimum, e.g., they could indicate the presence of saddle
points. On the other hand, large gradients do not necessarily
indicate fast convergence. Parameters may oscillate around the
optimum due to the variance of stochastic optimization [34],
e.g., SGD. Since gradients within the same layer have similar
magnitudes [33], and the inconsistencies of gradients are
mainly between layers [31], we adopt the layer-wise learning
speed [30] P t

i = {P t
i,1, P

t
i,2, . . . , P

t
i,L} to indicate the conver-

gence status of layers on client i, where

P t
i,l =

∥∥∥∑r−1
∆=0 Λt−∆

l

∥∥∥
ϵ +

∑r−1
∆=0

∥∥Λt−∆
l

∥∥ , ∀l. (1)

We use t to denote the training round, and Λt
l = θt

i(l) −
θt−1

i (l) is the update of layer l at round t and r is the observa-
tion window. A large observation window r indicates that the
learning speed takes into account more updates from previous
rounds. The symbol ϵ represents a small positive value that is
commonly used to avoid division-by-zero errors. The range of
P t

i,l is between 0 and 1, reflecting the convergence status of the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 11,2024 at 16:18:11 UTC from IEEE Xplore. Restrictions apply.

1772 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

layer at round t on client i. Generally, a small learning speed
of a layer suggests that the layer is close to its optimum, and
vice versa [30]. For example, if the gradients are consistently
pointing in the same direction within the observation window
[t−r+1, t], then P t

i,l = 1, indicating that the learned layer is far
from its optimum. Conversely, if the updates in the observation
window completely cancel each other out (i.e., the parameters
oscillate around a point), then P t

i,l = 0, indicating that the
parameters of layer l are close to the optimum.

The parameter size of layers in a model varies dramatically.
To complement the layer-wise learning speed, we calculate the
layer-wise discrepancy of the layers as an essential indicator
for layer ranking, i.e.,

Ψt
i,l =

∥∥θt
i(l)− θt−1

i (l)
∥∥ , ∀l (2)

where Ψt
i,l denotes the discrepancy of layer l at training

round t. The layer-wise discrepancy Ψt
i,l captures both the

divergence degree between layers and the parameter size of
the layers, providing a comprehensive measure. For example,
when two layers show similar convergence degrees, the layer
with more parameters exhibits a greater layer-wise discrepancy
compared to the other layer. Besides, a higher layer-wise
discrepancy also indicates that the layer has not yet converged
and requires further optimization.

Combined with layer-wise learning speed P t
i,l and discrep-

ancy Ψt
i,l, YOGA computes the layer-wise priority Pt

i =
{Pt

i,1,Pt
i,2, . . . ,Pt

i,L}, where

Pt
i,l =

P t
i,l + Ψt

i,l

2
, ∀l. (3)

Further, we rank the layers of the model according to the
layer-wise priorities, and obtain the layer ranking P̂t

i =
{r1, r2, . . . , rL}, where rj ∈ {1, · · · , L} is the index of layer
θt

i(rj) ranks jth among all layers in the model.

C. Peer Prioritizing

Peer Status. The coordinator periodically receives and
maintains the status information of clients uploaded by clients.
Formally, we represent the local data distribution with a vector
di = {d1

i , d
2
i , . . . , d

C
i },∀i ∈ N , where C = |di| is the

total number of classes in the learning problem and dc
i ,∀c ∈

{1, 2, . . . , C} is the proportion of class c in the local data
samples in Di. Thus, the distribution divergence over classes
between the local datasets of the client i and its peer j can be
represented as [35]:

Di,j =
C∑

c=1

∥dc
i − dc

j∥. (4)

Intuitively, by periodically aggregating the local model from
the peer j with higher distribution divergence Di,j , the local
model of client i can learn more knowledge from its peers
so that the learned local model has a good representative of
the global model. Moreover, we normalize the distribution
divergence D̂i = {D̂i,1, D̂i,2, . . . , D̂i,|σi|} of connected peers
for peer prioritizing, where

D̂i,j =
Di,j∑

k∈σi
Di,k

, j ∈ {1, 2, . . . , |σi|}. (5)

To efficiently collect layers from peers with limited commu-
nication capability, it is necessary to prioritize peers based on
their current bandwidth. This allows for the most efficient use
of available network resources for layer collection. We use
Bi to denote current bandwidth of client i and use pt

i =
{pt

i,1, p
t
i,2, . . . , p

t
i,|σi|} to indicate the bandwidth of peers of

client i at round t, where

pt
i,j =

Bt
j∑

k∈σi
Bt

k

, j ∈ {1, 2, . . . , |σi|} (6)

Prioritizing the connected peers. Based on data dis-
tribution divergence D̂i,j and available bandwidth pt

i at
round t, YOGA calculates the connected peers’ priorities
Pt

i = {Pt
i,1, Pt

i,2, . . . , Pt
i,|σi|} of client i, where

Pt
i,j = D̂i,j · wp + pt

i,j · (1− wp), j ∈ {1, 2, . . . , |σi|} (7)

and wp is the weight parameter to balance the impact of
data distribution and bandwidth, with the default value of
wp = 0.5. Pt

i represents the sequence of priorities assigned
to all connected peers of client i at round t. To generate the
layer-wise aggregation policy, YOGA ranks and normalizes
the peers’ priorities, i.e., P̂t

i = {P̂t
i,1, P̂t

i,2, . . . , P̂t
i,|σi|}, where

P̂t
i,j > P̂t

i,j+1 and

P̂t
i,j =

Pt
i,j∑

k∈σi
Pt

i,k

. (8)

D. Generating Aggregation Policy

Based on the priorities of layers P̂t
i = {P̂t

i,1, P̂t
i,2, . . . , P̂t

i,L}
and the connected peers P̂t

i = {P̂t
i,1, P̂t

i,2, . . . , P̂t
i,|σi|}, YOGA

generates the layer-wise aggregation policy using a greedy-
based algorithm, termed max-match (MM), as described in
Algorithm1. Specifically, according to the index γ of layers
in P̂t

i and the priority P̂t
i,j of peer j, MM firstly generates

the range of the layers that should be collected from peer j
(Line 2). Then, based on P̂t

i , MM gets the corresponding
layers and generates the layers that client i will pull from
peer j at round t (Line 3). We use the upper bound of
P̂t

i,j ×L (i.e., ⌈P̂t
i,j ×L⌉ (where ⌈·⌉ is the round-up operator)

to generate the number of layers should be pulled from peer j
(Line 4). YOGA allows overlap layers between two connected
peers when ⌈P̂t

i,j × L⌉ is not an integer, and overlap only
happens between two peers with consecutive priority, YOGA
allows overlapping layers between two connected peers when
the result of ⌈P̂t

i,j × L⌉ is not an integer. This overlap only
occurs between two peers with consecutive priorities, e.g.,
Γt

1

⋃
Γt

2 ̸= ϕ, where ϕ denotes the empty set. Peer with higher
priority gets more layers, which ranks higher among layers in
the local model. We then update the index γ for the following
generation. The layer-wise aggregation policy Γt(i) specifies
the peers j and corresponding layers Γt

j(i) that client i should
adopt for layer-wise model aggregation, i.e.,

Γt(i) = {Γt
1(i), Γ

t
2(i), . . . ,Γ

t
|σi|(i)}. (9)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 11,2024 at 16:18:11 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: YOGA: ADAPTIVE LAYER-WISE MODEL AGGREGATION FOR DFL 1773

Fig. 3. Illustration of layer-wise model aggregation in YOGA.

Algorithm 1 Greedy-Based Max-Maxth

Require: The ranking of layers P̂t
i ; the priority of connected

peers P̂t
i; the set of connected peers σi; the number of the

layers in current model L.
Ensure: The layer-wise model aggregation policy Γt(i).

Initialize index γ of layers in P̂t
i : γ = 1

1: for each peer j ∈ σi do
2: Calculate the range of layers from peer j: sj = γ, ej =

min(sj + ⌈P̂t
i,j × L⌉, L).

3: Get corresponding indices of layers according
to the ranking of layers P̂t

i : {rsj
, · · · , rej

} =
{P̂t

i [sj], · · · , P̂t
i [ej]}.

4: Generate layers pulling from peer j: Γt
j(i) =

{θt
j(rsj

), · · · , θt
j(rej

)}
5: Update index: γ = γ + ⌊P̂t

i,j × L⌋
6: end for

Γt
j(i),∀j ∈ σi is a bunch of layers that client i pulls from

connected peer j, i.e.,

Γt
j(i) = {θt

j(s), . . . , θ
t
j(e)}, 0 < s, e ≤ L (10)

where the subscript s and e is determined by both layer ranking
on client i and priority of peer j.

E. Performing Model Aggregation

Based on the layer-wise aggregation policy, the client col-
lects layers from peers and incorporates them into a new
combined model θ̃t

i , which is a full DNN model. For some
layers received from more than one peer, the layers in the
combined model θ̃t

i are the aggregation of the same layers by
layer-wise averaging [22]. Then, the client aggregates its local
model θ̂t

i after local training with the combined model θ̃t
i .

We use an averaging approach to aggregate models, i.e.,

θt+1
i = θ̂t

i · wθ + θ̃t
i · (1− wθ) (11)

where wθ is used for aggregating the combined model and
the local model, with the default value of wθ = 0.5. After
aggregation, client i will perform the next round of local
training. We provide an example below to better illustrate

the training process of YOGA. As shown in Fig. 3, we take
client 2 as an example. At the round t, client 2 utilizes its
local dataset to update the local model θt

2 and gets updated
model θ̂t

2. After the update is completed, it will upload some
key information to the coordinator to generate an aggregation
policy. Once the client receives the aggregation policy from
the coordinator, it actively pulls the layer parameters of the
model from the corresponding peer. For example, as shown
in the left subgraph of Fig. 3, at round t, client 2 will pull
layers 1 and 3 from client 1, layers 2 and 4 from client 3, and
layers 2 and 3 from client 6. After all the layer parameters are
received, these parameters are combined to create a hybrid
model θ̃t

2, which will be aggregated with the local model θ̂t
2.

The client will continue training with the aggregated model
until convergence.

IV. CONVERGENCE ANALYSIS

This section provides an analysis of the convergence of
the YOGA algorithm. Throughout this paper, we make the
following commonly used assumptions:

Assumption 1: Lipschitzian gradient. The loss function fi

is with L-Lispschitzian gradients, ∀θ1, θ2, i.e.,

∥∇fi(θ1)−∇fi(θ2)∥2 ≤ L∥θ1 − θ2∥2 , ∀i (12)

where ∥·∥2 is the L2 norm of vector.
Assumption 2: Unbiased estimation. For each client i,

we assume that the expectation of the stochastic gradient of F
on each data sample is equal to fi(θ), i.e.,

Eξ∼Di
∇Fi(θ; ξ) = ∇fi(θ). (13)

And further, for all clients, we assume that,

Ei∈V∇fi(θ) = ∇f(θ). (14)

Assumption 3: Bounded variance. We assume the variance
of stochastic gradients Ei∈VEξ∈Di

∥∇Fi(θ; ξ) − ∇f(θ)∥2 is
bounded for any θ with i uniformly sampled from V and ξ
from the distribution Di, i.e.

Eξ∼Di
∥∇Fi(θ; ξ)−∇fi(θ)∥2 ≤ ϱ2, ∀i, θ (15)

Ei∈V ∥∇fi(θ)−∇f(θ)∥ ≤ ς2, ∀θ. (16)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 11,2024 at 16:18:11 UTC from IEEE Xplore. Restrictions apply.

1774 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

Note that if the local dataset on each client is homogeneously
distributed, then ς = 0.

Assumption 4: Connected topology. We assume that the
global topology G in YOGA is a connected topology.

We prove the convergence of YOGA in two steps focus-
ing on an arbitrary client i. Firstly, we study the model
divergence between the model before model aggregation and
the model after model aggregation. Then, followed by the
previous work [11], we obtain the expectation of gradient after
T training rounds are bounded.

Theorem 1: After T training round, the average gradient
1
T

∑T−1
t=0 E ∥∇f(θt)∥2 is bounded, i.e.,

1
T

T−1∑
t=0

E
∥∥∇f(θt)

∥∥2 ≤ 4N(f(θ0)− f(θ∗)
4Nη(1− η)− 1

+
4N

4Nη(1− η)− 1
(
L+ 2N

8N2
α2

+
β2

4N
+

η2Lϱ2

2N
), (17)

where η = (1

2L+ϱ
√

T/N
)3, and T is sufficiently large.

Proof: We use the α2 to denote the upper bound of model
divergence of the combined model collected from peers θ̃t

i and
local model after local training θ̂t

i , i.e., ∥θ̃t
i − θ̂t

i∥ ≤ α2,∀t, i.
According to Assumption 3, we use β2 to represent the upper
bound of model divergence between local model before and
after local training, i.e., ∥∇f(θt)∥2 − ∥∇f(θ̂t)∥2 ≤ β2,∀t.

Based on the model aggregation in (11), we study the
divergence of the local model before aggregation and the
model after aggregation is bounded, i.e.,

E[f(θt+1 − f(θ̂t))] = E[f(θ̂t − 1
2N

(θ̃i
t − θ̂t

i)− f(θ̂t))]

≤ − 1
2N

E < ∇f(θ̂t), θ̃i
t − θ̂t

i >

+
L

8N2
∥θ̃i

t − θ̂t
i∥2

=− 1
4N

(∥∇f(θ̂t)+θ̃i
t−θ̂i

t∥2−∥∇f(θ̂t)∥2

− ∥θ̃i
t−θ̂i

t∥2)+
L

8N2
∥θ̃i

t − θ̂t
i∥2

≤ 1
4N

E∥∇f(θt)∥2 +
L+ 2N

8N2
α2 +

β2

4N
(18)

Followed by previous work in [11], we derive the bound of
E[f(θ̂t)− f(θ∗)], i.e.,

E[f(θ̂t)− f(θ∗)] ≤ E[f(θt − θ∗)]− (η +
η2

2
)E∥∇f(θt)∥2

+
η2Lϱ2

2N
(19)

By adding Eq. (18) and Eq. (19) and rearranging, we obtain the
convergence bound between two consecutive training rounds,
i.e.,

E[f(θt+1)− f(θt)] ≤ (
1

4N
− η + η2)E∥∇f(θt)∥2

+
L+ 2N

8N2
α2 +

β2

4N
+

η2Lϱ2

2N
.

(20)

Finally, by summing the results in (20) during the whole
training process (from t = 0 to T − 1), we have

T−1∑
t=0

E[f(θt+1)− f(θt)] = E[f(θ∗)− f(θ0)]

≤ T ((
1

4N
− η + η2)E∥∇f(θt)∥2

+
L+ 2N

8N2
α2 +

β2

4N
+

η2Lϱ2

2N
).

(21)

Dividing both sides of (21) by T and rearranging the inequality
above, we obtain:

1
T

T−1∑
t=0

E
∥∥∇f(θt)

∥∥2 ≤ 4N(f(θ0)− f(θ∗)
4Nη(1− η)− 1

+
4N

4Nη(1− η)− 1
(
L+ 2N

8N2
α2

+
β2

4N
+

η2Lϱ2

2N
), (22)

which completes the proof of Theorem 1.
The results of layer ranking and peer prioritizing are inputs

of the proposed MM algorithm, ensuring that the local model
closely approximates the global model, leading to smaller
values of α2 and β2, thereby guaranteeing faster model
convergence. The convergence bound is associated with α2

and β2, which are determined by both the local model and
the combined model. The combined model is composed of
different layers pulled by the client from various peers, reflect-
ing the optimization direction of the global model, whereas
the local model reflects the optimization direction of the local
model. YOGA utilizes the MM algorithm, derived from layer
ranking and peer priority, ensuring that the local model closely
approximates the global model. Consequently, α2 and β2,
computed from the local model and the mixed model, remain
within a relatively narrow range, guaranteeing the convergence
upper bound and thus accelerating the model convergence
process.

V. PERFORMANCE EVALUATION

A. Datasets and Models

Datasets: We adopt three real-world classical datasets to
conduct extensive experiments:
• EMNIST [36] comprises a collection of handwrit-

ten characters, including 731,668 training samples and
82,587 test samples. It encompasses 62 categories, which
include 10 digits and 52 characters encompassing lower-
case and uppercase letters.

• CIFAR-10 [37] is composed of 60,000 color images
with a resolution of 32 × 32 pixels. It is divided into
10 classes, each containing 6,000 images. The dataset is
further split into 50,000 training images and 10,000 test
images.

• ImageNet [38] is a visual recognition dataset consisting
of 1,281,167 training images, 50,000 validation images,
and 100,000 test images, spread across 1,000 categories.
To accommodate the limited resources of edge clients,

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 11,2024 at 16:18:11 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: YOGA: ADAPTIVE LAYER-WISE MODEL AGGREGATION FOR DFL 1775

we have created a subset called ImageNet-100. This sub-
set focuses on 100 categories selected from the original
1,000 categories. Furthermore, each sample in ImageNet-
100 is resized to a shape of 64 × 64 × 3, optimizing it
for efficient processing on edge devices.

To simulate the non-IID setting, we generate synthetic
non-IID datasets with varying levels of class distribution
skews, as described in [2] and [35], e.g., a single client may
have a larger proportion of data for one or a few specific
classes compared to others. Specifically, we divide a unique
class into equal portions among five clients, with a proportion
p (e.g., 0.1, 0.2, 0.4, 0.6, and 0.8). The remaining samples of
each class are then evenly distributed among the other clients.
Consequently, the non-IID levels of a dataset are denoted as
p = 0.1, 0.2, 0.4, 0.6 and 0.8, respectively. When p = 0.1,
samples are distributed uniformly and the distribution of the
training dataset is IID for 50 clients. For fair comparisons, the
full test datasets are used across all clients.

Models: To evaluate the performance, three different DNN
models with distinct structures are implemented on the afore-
mentioned datasets:
• CNN on EMNIST. The plain CNN model [3], tailored

for the EMNIST dataset, comprises two convolutional
layers of size 5 × 5, a fully connected layer with
512 units, and a softmax output layer with 62 units.

• AlexNet on CIFAR-10. The AlexNet model [19] is an
8-layer deep neural network (DNN) model adopted for
the CIFAR-10 dataset. It consists of three 3 × 3 con-
volutional layers, one 7 × 7 convolutional layer, one
11 × 11 convolutional layer, two fully-connected hidden
layers, and a fully-connected output layer.

• VGG-16 on ImageNet-100. The famous VGG-16
model [20], which consists of 13 convolutional layers
with a kernel of 3 × 3, followed by two dense layers and
a softmax output layer, is adopted for the ImageNet-100
dataset.

B. Baselines and Metrics

Baselines: We adopt three classical algorithms as baselines:
• GossipFL [24] enables each client to communicate with

just one peer during each communication round, exchang-
ing a highly compressed model.

• CFL-LS [15] independently selects fragments of the
DNN to be shared with peers at each round. The selection
process relies on a local optimizer that balances model
quality with sideline communication resources.

• Rand-YOGA pulls each layer of a DNN model from a
randomly selected peer and performs the same layer-wise
model aggregation process as YOGA. This baseline
is used to demonstrate the effectiveness of the MM
algorithm.

Metrics: We utilize the following three metrics to assess
the performance of YOGA and the baseline algorithms.
• Test accuracy. At each training round, we evaluate

the local model on the test dataset by measuring the
proportion of correctly predicted data. To be specific,

TABLE I
TECHNICAL SPECIFICATIONS OF JETSON DEVELOPER KITS

TABLE II
TRAINING DETAILS OF DIFFERENT MODELS/DATASETS

we calculate the mean test accuracy of all clients’ models
on the test datasets.

• Completion time. The completion time, which refers to
the total training duration required to attain the desired
test accuracy, is recorded and utilized to assess the
training speed.

• Communication traffic. The total communication cost
for transmitting the model (or layers) is recorded upon
reaching the target test accuracy. This metric reflects the
amount of data exchanged during the training process.

C. Experimental Settings

Test-bed Setup To better resemble the DFL setting, we
evaluate the performance of YOGA through physical experi-
ments. The test-bed experiments are performed on 20 NVIDIA
Jetson TX2, 20 NVIDIA Jetson Xavier NX, and 10 NVIDIA
Jetson AGX Xavier Developer Kits, where we randomly
select a client as the coordinator. More details of the Jet-
son devices can be found in TABLE III. We configure
Jetson devices to effectively operate with varying models
and datasets. The experimental network is set up using a
router, allowing clients to connect through wireless links. Our
software implementation utilizes Docker Swarm for distributed
software development [39], [40], and PyTorch deep learning
framework [41]. Docker Swarm-based distributed software
development makes it easier to build a distributed scheme
and detect the working status of each client. The PyTorch
deep learning framework enables clients to train the models
efficiently. Besides, the communication among clients is facil-
itated by the MPI (Message Passing Interface) [42], which

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 11,2024 at 16:18:11 UTC from IEEE Xplore. Restrictions apply.

1776 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

TABLE III
THE COMMUNICATION COST OF FOUR SCHEMES UNDER IID SETTING

WHEN ACHIEVING TARGET ACCURACIES, e.g., 85% ON EMNIST,
65% ON CIFAR-10 (YOGA PROVIDES THE

BASELINE COMMUNICATION COST)

Fig. 4. Test Accuracy of four schemes on the IID datasets.

optimizes parallel communication through a set of functions
such as sending and receiving.

Training Details: We adopt the decaying learning rate
technique [43] for training and use the SGD optimizer to
update the parameters of the DNN model. If not specified,
all experiments are conducted with the default settings as
shown in Table II (η stands for learning rate and ηmin is
the minimum of the learning rate). For example, we train
AlexNet on CIFAR-10 with a batch size of 32 and a local
iteration of 50. We use a learning rate of 0.1 and a decaying
learning rate of 0.98. The learning rate decays over the course
of training and the minimum learning rate is set to 0.001.
The total training round is 300 rounds. Each experiment is
conducted with 50 clients.

D. Overall Performance

Convergence Performance. Firstly, we implement a set
of experiments on the IID datasets with four schemes. The
training processes of YOGA and the baselines are pre-
sented in Fig. 4. The results show that YOGA can speed
up the training process under the IID setting. For example,
by Figs. 4(a) and 4(b), on EMNIST and CIFAR-10, the model
convergence rate of is the fastest compared to baselines. Addi-
tionally, we show the completion time of different schemes
upon achieving various target accuracies in Fig. 5. YOGA
demonstrates the fastest convergence rate and significantly
outperforms other schemes in terms of completion time. For
example, by Fig. 5(a), YOGA takes only 126s to achieve
85% accuracy for CNN on EMNIST, while Rand-YOGA,
GossipFL and CFL-LS take 160s, 211s, and 331s, respec-
tively. Compared with Rand-YOGA, GossipFL, and CFL-LS,
YOGA achieves 1.3×, 1.7× and 2.6× speedup, respectively.
By Fig. 5(b), YOGA speeds up training by about 1.3×, 1.9×,
and 2.7× when achieving 65% on CIFAR-10, compared with

Fig. 5. Completion time of four schemes when achieving different target
accuracy.

Fig. 6. Test accuracy of four schemes with non-IID level p = 0.4.

Rand-YOGA, GossipFL, and CFL-LS, respectively. These
results demonstrate the advantage of YOGA in accelerating
model training by collecting layers from peers to perform
model aggregation.

Communication Cost. In TABLE III, we compare the
communication cost of four schemes when achieving different
target accuracies under the IID setting. YOGA outperforms
the other schemes in terms of communication cost when
achieving the target accuracies, e.g., 85% for EMNIST,
65% for CIFAR-10. For example, by TABLE III, YOGA
requires 6.25GB to achieve 85% accuracy on the EMNIST
dataset, while Rand-YOGA, GossipFL, and CFL-LS requires
7.03GB, 12.9GB, and 6.89GB, respectively. Compared with
Rand-YOGA, GossipFL, and CFL-LS, YOGA reduces the
communication cost on EMNIST by about 12.3%, 106%,
and 10.1%, separately. YOGA reduces communication cost
on CIFAR-10 when achieving 65% by about 10.7%, 27.1%,
and 6% compared with Rand-YOGA, GossipFL, and CFL-
LS, respectively. These results demonstrate the advantage of
YOGA in saving communication cost and efficiency of YOGA
dealing with the IID dataset.

Secondly, we implement a set of experiments for four
schemes on non-IID datasets. Figs. 6 and 7 show the results
of model training on two different datasets (EMNIST and
CIFAR-10) under two non-IID settings, i.e., p = 0.4 and
p = 0.6, respectively. YOGA accelerates the training process
without sacrificing accuracy under the non-IID setting. For
example, by Fig. 6(a), when achieving 80% accuracy on
EMNIST, YOGA speeds up the training process by 1.2×,
1.7× and 2.4×, compared with Rand-YOGA, GossipFL and
CFL-LS, individually. By Fig. 6(b), when achieving 55%
accuracy on CIFAR-10, YOGA takes 97s, while Rand-YOGA,
GossipFL and CFL-LS take 131s, 124s and 250s, respectively.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 11,2024 at 16:18:11 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: YOGA: ADAPTIVE LAYER-WISE MODEL AGGREGATION FOR DFL 1777

Fig. 7. Test accuracy of four schemes on the three datasets with non-IID
level p = 0.6.

Fig. 8. Completion time of four schemes when achieving 80% accuracy on
EMNIST and 55% accuracy on CIFAR-10 under different non-IID levels.

By Fig. 7(a), YOGA achieves 1.2×, 2.7× and 2.7× speedup
on EMNIST, compared with Rand-YOGA, GossipFL, CFL-
LS, separately. By Fig. 7(b), YOGA achieves 1.2×, 1.7× and
2.3× speedup on CIFAR-10, compared with Rand-YOGA,
GossipFL and CFL-LS, respectively. These results signifi-
cantly demonstrate the advantage of YOGA in dealing with
non-IID data.

E. The Effect of Non-IID Data

To demonstrate the effectiveness of YOGA on the non-IID
data, we compare the completion time required to achieve the
target accuracy with baselines at different non-IID levels (p =
0.2, 0.4, and 0.6) in Fig. 8. First, as the non-IID level increases,
all schemes require more time to reach the target accuracy.
For example, by Fig. 8(a), the time to reach 80% accuracy on
EMNIST with p = 0.6 is separately 1.26×, 1.42× more than
that with p = 0.4 and p = 0.2 for YOGA. Second, YOGA
outperforms other schemes in terms of completion time when
achieving the same target accuracy. For example, as shown
in Fig. 8(a), YOGA provides a speedup of 1.87-2.9× under
all non-IID settings compared with baselines. By Fig. 8(b),
YOGA consistently outperforms the baseline schemes under
different non-IID levels, and provides a speedup of 2.68-3.5×.
In addition, we show the test accuracy within the same time
of YOGA and the baselines in Fig. 9. The results reveal that
YOGA consistently outperforms the baselines in test accuracy.
For example, by Fig. 9(a), YOGA achieves 3.7%∼4.4% higher
accuracy than the baselines on EMNIST within 100s under
the non-IID level of p = 0.6. By 9(b), YOGA achieves
3.6%∼17% higher accuracy than other schemes on CIFAR-10
within 400s under the non-IID level of p = 0.6. These results

Fig. 9. Accuracy within the same time of four schemes under different
non-IID levels.

Fig. 10. Accuracy within the same cost of four schemes under different
non-IID levels.

Fig. 11. Time slots of the main procedure required for YOGA to converge.

demonstrate the effectiveness and efficiency of YOGA dealing
with non-IID data.

Additionally, we show the performance comparison with
different non-IID levels under the same communication bud-
get. As shown in Fig. 10, we record the test accuracy with the
communication budget of 6GB and 20GB on EMNIST and
CIFAR-10, respectively. In various non-IID settings, YOGA
consistently achieves superior performance compared to base-
lines with the same communication cost. For example, given
the communication budget of 6GB with p = 0.6 on EMNIST,
YOGA achieves an accuracy improvement of 1.27%, 0.27%,
and 0.22% compared to GossipFL, CFL-LS, and Rand-
YOGA, respectively. Besides, given the communication budget
of 20GB for CIFAR-10, YOGA exhibits notable accuracy
improvements of 6.7%, 2.1%, and 2.9% in comparison to Gos-
sipFL, CFL-LS, and Rand-YOGA with p = 0.6, respectively.
These results demonstrate that YOGA handles non-IID issue
effectively and save communication cost without sacrificing
model performance in DFL.

Besides, to demonstrate that layer ranking and peer pri-
oritizing do not introduce extra computational complexity,
we recorded the time required for the key steps during the
convergence process of YOGA. In Fig. 11, we present the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 11,2024 at 16:18:11 UTC from IEEE Xplore. Restrictions apply.

1778 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

time slots for the main processes of YOGA, i.e., local training,
communication, layer ranking, peer prioritizing, training CNN
on EMNIST and AlexNet on CIFAR-10. Apparently, as our
analysis suggests, YOGA does not introduce significant addi-
tional computation complexity. For example, when training
AlexNet on CIFAR-10, the time spent on layer ranking and
peer prioritizing accounts for only 1.2% of the total training
time, which is significantly lower than the time spent on local
training and communication.

VI. RELATED WORKS

The introduction of FL by McMahan et al. in [3] has
opened up a new paradigm for collaborative training with
isolated datasets, drawing considerable attention from the
research community. While FL offers several advantages, such
as the preservation of data privacy and reduction of com-
munication cost, it also faces challenges such as system and
data heterogeneity and limited communication bandwidth [44].
Numerous techniques have been proposed to address the chal-
lenge of communication constraints in FL, including model
compression [45], [46], [47] and pruning [48], [49]. However,
most of these previous works commonly assume that period-
ically full model aggregation.

Earlier works [22] focus on reducing the communication
cost by layer-wise model aggregation under PS architec-
ture. Lee et al. propose FedLAMA [22], a technique that
dynamically fine-tunes the aggregation period of each layer,
accounting for the layer-wise unit model discrepancy to cur-
tail communication expenses. In [23], Ma et al. propose
pFedLA, which selectively aggregates the layers contribut-
ing more to the model convergence while skipping the less
important ones under PS architecture. However, these stud-
ies predominantly revolve around PS-based FL, exposing
them to the inherent problem of a single point of failure.
For DFL, Tang et al. propose GossipFL [24], which allows
clients to accelerate DFL model training by communicating
with a highly sparse model from a single peer. Besides,
Hu et al. present Combo [25], a segmented gossip method
designed to leverage node-to-node bandwidth efficiently while
maintaining strong training convergence. Combo allows the
client to pull different parts of the model parameters from
various workers and rebuild a mixed model for aggregation.
In addition, Barbieri et al. introduce CFL-LS [26], a method
for client-driven DNN fragment selection. It uses a layer
optimizer to rank layers based on their impact on model quality
(measured by normalized squared gradient of local loss) and
introduces a fairness scheme for balanced parameter selection
and enhanced performance. However, existing DFL methods
mainly focus on optimizing network bandwidth utilization
and reducing communication overhead, often overlooking the
impact of non-IID issue. This oversight may result in signifi-
cant performance degradation and poor convergence rates.

Regarding non-IID issue in DFL, numerous studies have
been conducted [12], [13] aiming to improve model perfor-
mance and convergence speed. In [12], Kong et al. conclude
that a large consensus distance (correlated to heterogeneous
data distribution) can be beneficial for the performance
of decentralized training. Wang et al. propose CoCo [13] to

preferentially select peers with large divergence in data distri-
bution to overcome the challenge of non-IID data. However,
all of these existing works commonly assume the full model as
the basic transmission unit, which may not be flexible enough
for bandwidth-constrained edge devices, and how layer-wise
model aggregation addresses non-IID data remains unexplored.

We summarize the primary differences between the exist-
ing works and our work as follows. On one hand, existing
research [12], [13], [24] that employs the full model as
the basic transmission unit typically utilizes compression or
quantization techniques to reduce the size of the DNN model.
However, this inevitably leads to a decrease in model accu-
racy, requiring more training rounds to converge. Besides,
such approaches overlook the learning dynamics of a DNN
throughout training [28] (e.g., different layers of a DNN model
have distinct learning speeds and divergences), and using
the full model as the transmission unit may not be flexi-
ble enough for bandwidth-constrained edge devices. On the
other hand, existing research [25], [26] that uses layers as
the basic transmission unit primarily focuses on bandwidth
utilization but often neglects the impact of non-IID data.
These approaches may exhibit slow convergence rates and
degradation of model accuracy when dealing with non-IID
data. In contrast, YOGA investigates the relationship between
layer-wise model aggregation and data distribution. Through
layer-wise model aggregation, YOGA not only makes full
utilization of node-to-node bandwidth, but also addresses the
non-IID issue.

VII. DISCUSSION

Since layer-wise model aggregation is not the only way
to reduce communication, in this section, we discuss the
differences and connections between the layer-wise method
and traditional communication reduction methods. In addi-
tion to layer-wise model aggregation, model compression or
quantization techniques are widely adopted to reduce the
communication cost of FL [12], [13], [24], [50], [51]. These
existing works usually propose to periodically exchange the
full model and reduce communication cost by representing
the model with fewer parameters. For example, RandomK
and TopK [50] select a portion of the model’s parameters for
transmission. However, this inevitably leads to a decrease in
model accuracy and more training rounds to converge, which
increases the communication cost during the training process.
Besides, such approaches always overlook the learning dynam-
ics of a DNN throughout training [28] (e.g., different layers of
a DNN model have distinct learning speeds and divergences),
and using the full model as the transmission unit may not
be flexible enough for bandwidth-constrained edge devices.
Through layer-wise model aggregation, YOGA offers greater
flexibility in utilizing network bandwidth and substantially
reduces bandwidth overhead on each link, thus mitigating
communication cost for edge devices. Importantly, our method
is also orthogonal to these traditional techniques (e.g., model
compression or quantization). For example, combined with
the TopK technique, YOGA can dynamically set thresholds to
control the compression rate. For layers with a larger number
of parameters, higher compression rates may be applied, while

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 11,2024 at 16:18:11 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: YOGA: ADAPTIVE LAYER-WISE MODEL AGGREGATION FOR DFL 1779

layers with fewer parameters may adopt lower compression
rates. This area holds promise for future research.

VIII. CONCLUSION

In this work, we have proposed the YOGA framework,
which integrates the idea of layer-wise model aggregation into
DFL, to fully utilize the limited communication capability of
edge clients while dealing with the non-IID data challenge.
We have designed a heuristic algorithm (MM) to adaptively
determines the layer-wise model aggregation policy for each
client. We have built a test-bed environment and evaluated
the performance of YOGA. The results demonstrate the effec-
tiveness of YOGA in accelerating the model convergence
and saving communication cost without sacrificing model
performance.

REFERENCES

[1] W. Y. B. Lim et al., “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031–2063, 3rd Quart., 2020.

[2] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-IID data with reinforcement learning,” in Proc. IEEE Conf.
Comput. Commun., Jul. 2020, pp. 1698–1707.

[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–1282.

[4] H. Zhang, J. Bosch, and H. H. Olsson, “Federated learning systems:
Architecture alternatives,” in Proc. 27th Asia–Pacific Softw. Eng. Conf.
(APSEC), Dec. 2020, pp. 385–394.

[5] E. T. M. Beltrán et al., “Decentralized federated learning: Funda-
mentals, state of the art, frameworks, trends, and challenges,” 2022,
arXiv:2211.08413.

[6] J. Liu et al., “Adaptive asynchronous federated learning in resource-
constrained edge computing,” IEEE Trans. Mobile Comput., vol. 22,
no. 2, pp. 674–690, Feb. 2023.

[7] P. Goyal et al., “Accurate, large minibatch SGD: Training ImageNet in
1 hour,” 2017, arXiv:1706.02677.

[8] S. Rajendran, Z. Xu, W. Pan, A. Ghosh, and F. Wang, “Data heterogene-
ity in federated learning with electronic health records: Case studies of
risk prediction for acute kidney injury and sepsis diseases in critical
care,” PLOS Digital Health, vol. 2, no. 3, 2023, Art. no. e0000117.

[9] Q. Ma, Y. Xu, H. Xu, Z. Jiang, L. Huang, and H. Huang, “FedSA:
A semi-asynchronous federated learning mechanism in heterogeneous
edge computing,” IEEE J. Sel. Areas Commun., vol. 39, no. 12,
pp. 3654–3672, Dec. 2021.

[10] Y. Liao, Y. Xu, H. Xu, L. Wang, and C. Qian, “Adaptive configuration
for heterogeneous participants in decentralized federated learning,” in
Proc. IEEE Conf. Comput. Commun., May 2023, pp. 1–10.

[11] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu,
“Can decentralized algorithms outperform centralized algorithms? A
case study for decentralized parallel stochastic gradient descent,” in
Advances in Neural Information Processing Systems, vol. 30. 2017.

[12] L. Kong, T. Lin, A. Koloskova, M. Jaggi, and S. Stich, “Consensus
control for decentralized deep learning,” in Proc. Int. Conf. Mach.
Learn., 2021, pp. 5686–5696.

[13] L. Wang, Y. Xu, H. Xu, M. Chen, and L. Huang, “Accelerating
decentralized federated learning in heterogeneous edge computing,”
IEEE Trans. Mobile Comput., vol. 22, no. 9, pp. 5001–5016, Sep. 2022.

[14] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 3043–3052.

[15] P. Zhou, Q. Lin, D. Loghin, B. C. Ooi, Y. Wu, and H. Yu,
“Communication-efficient decentralized machine learning over hetero-
geneous networks,” in Proc. IEEE 37th Int. Conf. Data Eng. (ICDE),
Apr. 2021, pp. 384–395.

[16] Q. Luo, J. He, Y. Zhuo, and X. Qian, “Prague: High-performance
heterogeneity-aware asynchronous decentralized training,” in Proc. 25th
Int. Conf. Architectural Support Program. Lang. Operating Syst., 2020,
pp. 401–416.

[17] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola, “Dive into deep
learning,” 2021, arXiv:2106.11342.

[18] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. 19th Int. Conf. Comput. Statist. Cham, Switzerland:
Springer, 2010, pp. 177–186.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 2,
pp. 84–90, Jun. 2012.

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[21] OpenAI, “GPT-4 technical report,” 2023, arXiv:2303.08774.
[22] S. Lee, T. Zhang, C. He, and S. Avestimehr, “Layer-wise adaptive model

aggregation for scalable federated learning,” 2021, arXiv:2110.10302.
[23] X. Ma, J. Zhang, S. Guo, and W. Xu, “Layer-wised model aggregation

for personalized federated learning,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 10082–10091.

[24] Z. Tang, S. Shi, B. Li, and X. Chu, “GossipFL: A decentralized federated
learning framework with sparsified and adaptive communication,” IEEE
Trans. Parallel Distrib. Syst., vol. 34, no. 3, pp. 909–922, Mar. 2023.

[25] C. Hu, J. Jiang, and Z. Wang, “Decentralized federated learning:
A segmented gossip approach,” 2019, arXiv:1908.07782.

[26] L. Barbieri, S. Savazzi, and M. Nicoli, “A layer selection optimizer for
communication-efficient decentralized federated deep learning,” IEEE
Access, vol. 11, pp. 22155–22173, 2023.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 25, 2012.

[28] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein, “SVCCA: Sin-
gular vector canonical correlation analysis for deep learning dynamics
and interpretability,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30,
2017.

[29] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-IID data
quagmire of decentralized machine learning,” in Proc. Int. Conf. Mach.
Learn., 2020, pp. 4387–4398.

[30] X. Xiao, T. B. Mudiyanselage, C. Ji, J. Hu, and Y. Pan, “Fast deep
learning training through intelligently freezing layers,” in Proc. Int. Conf.
Internet Things (iThings) IEEE Green Comput. Commun. (GreenCom)
IEEE Cyber, Phys. Social Comput. (CPSCom) IEEE Smart Data (Smart-
Data), Jul. 2019, pp. 1225–1232.

[31] C. Ye, Y. Yang, C. Fermuller, and Y. Aloimonos, “On the importance of
consistency in training deep neural networks,” 2017, arXiv:1708.00631.

[32] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “FreezeOut: Accelerate
training by progressively freezing layers,” 2017, arXiv:1706.04983.

[33] B. Singh, S. De, Y. Zhang, T. Goldstein, and G. Taylor, “Layer-specific
adaptive learning rates for deep networks,” in Proc. IEEE 14th Int. Conf.
Mach. Learn. Appl. (ICMLA), Dec. 2015, pp. 364–368.

[34] X. Qian and D. Klabjan, “The impact of the mini-batch size
on the variance of gradients in stochastic gradient descent,” 2020,
arXiv:2004.13146.

[35] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-IID data,” 2018, arXiv:1806.00582.

[36] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: Extending
MNIST to handwritten letters,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), May 2017, pp. 2921–2926.

[37] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Toronto, ON, Canada, 2009.

[38] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[39] D. Merkel et al., “Docker: Lightweight Linux containers for consistent
development and deployment,” Linux J., vol. 239, no. 2, p. 2, 2014.

[40] N. Naik, “Building a virtual system of systems using Docker swarm in
multiple clouds,” in Proc. IEEE Int. Symp. Syst. Eng. (ISSE), Oct. 2016,
pp. 1–3.

[41] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019.

[42] E. Gabriel et al., “Open MPI: Goals, concept, and design of a
next generation MPI implementation,” in Proc. Eur. Parallel Vir-
tual Mach./Message Passing Interface Users’ Group Meeting. Cham,
Switzerland: Springer, 2004, pp. 97–104.

[43] S. L. Smith and Q. V. Le, “A Bayesian perspective on generalization
and stochastic gradient descent,” 2017, arXiv:1710.06451.

[44] Y. Liao, Y. Xu, H. Xu, Z. Yao, L. Wang, and C. Qiao, “Accel-
erating federated learning with data and model parallelism in edge
computing,” IEEE/ACM Trans. Netw., early access, Aug. 24, 2023, doi:
10.1109/TNET.2023.3299851.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 11,2024 at 16:18:11 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNET.2023.3299851

1780 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 2, APRIL 2024

[45] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” 2017, arXiv:1712.01887.

[46] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-IID data,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400–3413,
Sep. 2020.

[47] Y. Xu, Y. Liao, H. Xu, Z. Ma, L. Wang, and J. Liu, “Adaptive control of
local updating and model compression for efficient federated learning,”
IEEE Trans. Mobile Comput., vol. 22, no. 10, pp. 5675–5689, Oct. 2023.

[48] Y. Jiang et al., “Model pruning enables efficient federated learning on
edge devices,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Apr. 25, 2022, doi: 10.1109/TNNLS.2022.3166101.

[49] S. Vahidian, M. Morafah, and B. Lin, “Personalized federated learning
by structured and unstructured pruning under data heterogeneity,” in
Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst. Workshops (ICDCSW),
Jul. 2021, pp. 27–34.

[50] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with
memory,” in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018.

[51] J. Liu, J. Yan, H. Xu, Z. Wang, J. Huang, and Y. Xu, “Finch:
Enhancing federated learning with hierarchical neural architecture
search,” IEEE Trans. Mobile Comput., early access, Sep. 14, 2023, doi:
10.1109/TMC.2023.3315451.

Jun Liu received the B.S. degree from Central South
University in 2019. He is currently pursuing the mas-
ter’s degree with the School of Computer Science
and Technology, University of Science and Technol-
ogy of China (USTC). His current research interests
include edge computing and federated learning.

Jianchun Liu (Member, IEEE) received the Ph.D.
degree from the School of Data Science, University
of Science and Technology of China, in 2022. He is
currently an Associate Researcher with the School
of Computer Science and Technology, University
of Science and Technology of China. His current
research interests include software-defined networks,
network function virtualization, edge computing, and
federated learning. He is member of ACM.

Hongli Xu (Member, IEEE) received the B.S. degree
in computer science and the Ph.D. degree in com-
puter software and theory from the University of
Science and Technology of China (USTC), China,
in 2002 and 2007, respectively. He is currently
a Professor with the School of Computer Science
and Technology, USTC. He has published more
than 100 papers in famous journals and confer-
ences, including IEEE/ACM TRANSACTIONS ON
NETWORKING, IEEE TRANSACTIONS ON MOBILE
COMPUTING, IEEE TRANSACTIONS ON PARAL-

LEL AND DISTRIBUTED SYSTEMS, Infocom, and ICNP. He has also held
more than 30 patents. His current research interests include software-defined
networks, edge computing, and the Internet of Things. He was awarded the
Outstanding Youth Science Foundation of NSFC in 2018. He has won the
best paper award or the best paper candidate at several famous conferences.

Yunming Liao received the B.S. degree from the
University of Science and Technology of China in
2020, where he is currently pursuing the Ph.D.
degree with the School of Computer Science and
Technology. His current research interests include
mobile edge computing and federated learning.

Zhiyuan Wang received the B.S. degree from Jilin
University in 2019. He is currently pursuing the
master’s degree with the School of Computer Sci-
ence, University of Science and Technology of China
(USTC). His current research interests include edge
computing, deep learning, and federated learning.

Qianpiao Ma received the B.S. degree in com-
puter science from the University of Science and
Technology of China in 2014 and the Ph.D. degree
in computer software and theory from the Univer-
sity of Science and Technology of China in 2022.
He is currently a Post-Doctoral Researcher with
Purple Mountain Laboratories. His current research
interests include federated learning, mobile edge
computing, and distributed machine learning.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on July 11,2024 at 16:18:11 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2022.3166101
http://dx.doi.org/10.1109/TMC.2023.3315451

