
5630 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 4, APRIL 2024

Fully Distributed Task Offloading in
Vehicular Edge Computing

Qianpiao Ma , Hongli Xu , Member, IEEE, Haibo Wang , Member, IEEE, Yang Xu , Member, IEEE,
Qingmin Jia , and Chunming Qiao , Fellow, IEEE

Abstract—In vehicular edge computing (VEC), the deployment
of road side units (RSUs) along roads enables vehicles to offload
computation-intensive tasks for efficient data processing. However,
VEC poses unique challenges, including resource constraints on
vehicles and RSUs, high vehicle mobility, and the large-scale nature
of the infrastructure. Existing solutions, whether centralized or
distributed, often suffer from longer decision-making times or task
response times, making them unsuitable for vehicular scenarios. To
address these challenges, this paper proposes a Fully Distributed
Task Offloading (FDTO) decision-making scheme, which enables
vehicles to iteratively adjust their offloading decisions based on
resource utilization information obtained from neighboring RSUs.
FDTO employs two different algorithms for decision adjustments:
a greedy-based algorithm and a convex optimization-based algo-
rithm. Theoretical analysis proves the convergence of the proposed
algorithms to a global optimum through iterations. To evaluate the
performance of FDTO, extensive simulations are conducted and
the results demonstrate that the proposed algorithms offer near-
optimal performance with a short decision-making time, reducing
the average task response time by 50%-65% compared to existing
algorithms.

Index Terms—Vehicular edge computing (VEC), distributed task
offloading, delay optimal, decision making.

I. INTRODUCTION

THE increasing popularity of the Internet of Things (IoT)
and Artificial Intelligence (AI) is propelling the advance-

ment of vehicular networks [1]. These networks are designed
to collect data from various equipment on mobile vehicles,
including cameras and radars, to enable the development of
intelligent applications in future transportation systems. These
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applications, such as path planning [2] and vehicle recogni-
tion [3], are crucial for alleviating traffic congestion, enhancing
road safety, and improving the overall quality of service (QoS). It
is imperative that the results obtained from these applications are
not only efficient but also delivered promptly to ensure optimal
performance across a wide range of vehicular network.

In traditional vehicular networks, a significant volume of
application data is transmitted to a remote cloud platform via
the core network, thereby imposing stringent demands on trans-
mission bandwidth and resulting in delays in responding to
application requests [4]. This situation is further exacerbated
when the core network experiences congestion or heavy traffic,
rendering response times unpredictable, especially in scenarios
with high traffic dynamics. Consequently, none of these cases
meet the stringent requirement for low response time.

Mobile Edge Computing (MEC) [5] has been proposed to
address the escalating demands for computation and alleviate
the burden on core networks. In this approach, the process-
ing capacity is shifted from the cloud to the edge, enabling
application tasks to be executed at network edges [6], [7],
[8]. This advancement has paved the way for the emergence
of Vehicular Edge Computing (VEC) [9], which involves of-
floading computationally intensive tasks from vehicles to Road
Side Units (RSUs) equipped with communication, computation,
and storage resources. However, to design an efficient task
offloading decision-making mechanism for VEC, we should
take the following unique characteristics of vehicular networks
into considerations. 1) Resource constraints on vehicles. For
example, compared with large-scale data centers, the compu-
tation resources on RSUs are very limited. 2) High dynamics.
Due to high mobility of vehicles and dynamic task arrival, a
long decision making time may make the offloading decision
infeasible. That is, only real-time offloading decisions make
sense. 3) Large scale. It is a great challenge to make suitable
offloading decisions in a large-scale vehicular network with
enormous amount of vehicles and RSUs.

Efforts have been dedicated to achieving efficient task of-
floading in VEC, which can be broadly classified into two
types. The first type is centralized task offloading [10], [11],
[12], [13], where an entity within the VEC infrastructure,
typically the remote cloud platform or an RSU, acts as the
controller and gathers all the necessary information to make
global task offloading decisions for all vehicle tasks. For
instance, [10] formulates task offloading as a mixed integer
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TABLE I
COMPARISON OF DIFFERENT OFFLOADING DECISION SOLUTIONS

non-linear (MINLP) program and solves it to obtain the offload-
ing strategy for vehicles through centralized decision-making.
Due to the high complexity in solving MINLP program, [11],
[12], [13] provide learning-based methods for decision making
in VEC. However, these centralized solutions has several lim-
itations. Firstly, it is susceptible to single-point failures, where
the controller device malfunction can render the entire system
non-functional and require a complete reset. Secondly, the lim-
ited computation capacity of the centralized controller becomes
a bottleneck as the VEC scale expands, resulting in slower
decision-making.

The second type of solutions in VEC is distributed task
offloading, where each vehicle autonomously makes offloading
decisions. Some existing distributed decision-making solutions
are based on game theory [14], [15], [16], [17]. For example, [17]
formulates task offloading as a distributed decision making
game, where each vehicle, as a player, makes its best response
decision by a self-learning based algorithm. Although these
algorithms overcome the single-point failure problem of the
centralized solutions, it may not be practical for large scale VEC.
The reason being, they require vehicles to take turns executing
algorithms in a round-robin fashion until a Nash equilibrium
is reached, incurring a time complexity that scales with the
number of vehicles, making it impractical for time-sensitive
applications. Another kind of distributed solutions involve each
vehicle making selfish offloading decisions based solely on
its local information [18], [19], enabling real-time offloading
decisions. However, these solutions may suffer from suboptimal
performance due to the lack of global information. For example,
an RSU may face severe congestion when too many vehicles
choose to offload tasks to it. Consequently, achieving an optimal
offloading strategy or even a satisfactory performance level
remains challenging.

In this paper, we propose a fully distributed iterative scheme
for task offloading in VEC, aiming to achieve short task response
time with fast offloading decisions. Specifically, each vehicle
needs only collect resource information from the neighbour
RSUs [17], [20]. Through an iterative interaction between RSUs
and vehicles, each vehicle can independently make a offload-
ing decision with low complexity, while achieving a theoretic
global optimum. Compared to the centralized and game-based
distributed solutions, our solution significantly reduces decision
making time and remains unaffected by the scale of VEC,
ensuring real-time offloading decisions for vehicles and enabling
better scalability. Compared to the selfish distributed solutions,
our iterative scheme allows each vehicle to consider the deci-
sions of other vehicles when offloading tasks, enabling better

global performance. A summarized comparison of offloading
solutions is provided in Table I. The main contributions of this
paper can be summarized as follows:

1) We formulate the delay-optimal task offloading problem
in VEC and propose a fully distributed task offloading
(FDTO) scheme, where vehicles make their offloading
decisions only based on its neighboring information rather
than the whole network, significantly improving the scal-
ability for dealing with system dynamics.

2) We propose a distributed iterative algorithm for task of-
floading, which consists of two algorithms for the RSU
side and the vehicle side, respectively. In particular, we
design two vehicle side algorithms to adjust their of-
floading decisions. One is the greedy based algorithm
FDTO-VG, with very simple computation, and the other
is called FDTO-VX based on convex optimization. We
also theoretically prove that the proposed algorithms will
converge to the global optimum.

3) We conduct large-scale simulations for numerical eval-
uation. The simulation results show that our proposed
algorithms can reduce the average task response time by
about 50%–65% compared with the existing algorithms
while keeping a short decision making time in a large
scale MEC.

II. SYSTEM MODEL

A. Network Model

Consider a VEC-enabled system comprising a collection of
n vehicles, denoted as V = {v1, v2, . . ., vn}, where n = |V |,
and a set of m Road Side Units (RSUs), denoted as S =
{s1, s2, . . ., sm}, wherem = |S|. These vehicles generate tasks
for various applications, such as path planning and vehicle
recognition. The task arrivals on vehicle vi follow a Poisson
process with an expected arrival rate of φi [5]. The total task
arrival rate in the system is represented asΦ =

∑
vi∈V φi. Tasks

can vary in terms of input data size, output data size, and the
required number of CPU cycles for execution. The expected
values of these parameters on any vehicle vi are denoted as
ζi, θi, and δi, respectively. Each RSU sj ∈ S has a maximum
computation capacity, denoted asμj , which is measured in terms
of the number of CPU cycles per unit time. Additionally, each
RSU sj is assigned an energy consumption budget per unit time,
represented as Emax

j . Vehicles offload their tasks to RSUs for
efficient processing. pi,j denotes the probability that vehicle vi
offloads its tasks to RSU sj . Some important notations of this
paper are listed in Table II.
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TABLE II
NOTATION SUMMARY

B. Transmission Model

1) Limited Range Transmission: Let Pu
i represent the trans-

mission power of vehicle vi for uplink transmission, and hi,j
denote the channel gain from vehicle vi to RSU sj . It is important
to note that vehicle vi can only establish communication with an
RSU if the received signal is sufficiently strong. Therefore, we
define Si = {sj |Ru

i,j > Rth} as the set of RSUs that vehicle
vi can communicate with, where Ru

i,j = Pu
i hi,j denotes the

received power on RSU sj from vehicle vi, and Rth represents
the received power threshold [21]. Similarly, the set of vehicles
that can communicate with RSU sj is denoted as Vj . Clearly,
for any pair of vehicle vi and RSU sj , if sj /∈ Si, then we have
vi /∈ Vj . In either case, it implies that pi,j = 0, indicating that
tasks generated by vehicle vi cannot be offloaded to RSU sj .

2) Transmission Delay: The task transmission delay is
mainly incurred from vehicle to RSU through the uplink channel.
The uplink transmission rate rui,j from vi to sj can be given by
the Shannon capacity [6],

rui,j = B log2

(
1 +

Pu
i hi,j

σ2 + Ii,j

)
, (1)

where B is the channel bandwidth, σ2 is the noise power and
Ii,j is the interference from other vehicles at the side of RSU
sj for vi. Due to the limited transmission power of vehicles,
the interference Ii,j mainly depends on other vehicles in Vj [6],

[21], and can be expressed as

Ii,j =
∑

vi′ ∈Vj\{vi}
Pu
i′ hi′,j . (2)

Then the average transmission delay of a task from vi to sj
can be calculated as

DT
i,j =

ζi
rvi,j

. (3)

Following many studies [22], [23] where the result’s size
after task processing is generally much smaller than its data
size before processing, we ignore the transmission delay for
sending the task results from RSUs back to vehicles for sim-
plicity. Nevertheless, the following analyses and the proposed
solutions are still applicable with these taken into consideration.
For example, downlink transmission delay can be reflected by
additional transmission delay that changes (3).

3) Transmission Energy Consumption of RSUs: The trans-
mission energy consumption of an RSU is used for transmitting
the output data of after executing a task. Suppose that RSU
sj operates at a fixed transmission power P d

j . The downlink
transmission rate rdi,j between RSU sj and vehicle vi can be
also obtained by the Shannon capacity.

Let θi denote the downlink data size caused by sending one
task’s result back to vi. Then, the downlink traffic data size from
sj to vi in one unit time (e.g. per second) is ηi,j = pi,jφiθi.
Therefore, the total transmission energy consumption of sj in
unit time is

ET
j =

∑
vi∈Vj

P d
j ηi,j

rdi,j
=
∑
vi∈Vj

P d
j pi,jφiθi

rdi,j
. (4)

C. Computation Model

1) Computation Delay: Given the offloading decision pi,j ,
∀vi ∈ V, sj ∈ S, the required computation capacity on sj posed
by tasks from vi is ξi,j = pi,jφiδi. Accordingly, the total re-
quired computation capacity of RSU sj is given by

λj =
∑
vi∈Vj

ξi,j =
∑
vi∈Vj

pi,jφiδi. (5)

As tasks’ arrival on each vehicle vi ∈ V follows a Poisson
process, according to the splitting property of Poisson pro-
cesses [24], the arrival process on each RSU will also follow
the Poisson process. Then the computation delay at each RSU
can be modeled as an M/GI/1-PS system [25]. So the expected
computation delay of one task from vi on sj is

DC
i,j =

δi
μj − λj

. (6)

2) Computation Energy Consumption: The computation en-
ergy consumption of an RSU depends on the required number
of CPU cycles for performing tasks. Therefore, the total com-
putation energy consumption of sj in one unit time is

EC
j = κjλj = κj

∑
vi∈Vj

pi,jφiδi, (7)
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Fig. 1. Illustration of the workflow.

whereκj is the energy consumption for executing one CPU cycle
on sj .

III. SYSTEM WORKFLOW AND PROBLEM FORMULATION

A. System Workflow

The workflow of our solution is depicted in Fig. 1. The system
timeline is segmented into a series of fixed-length slots, with
a shorter slot chosen to more effectively handle task arrival
dynamics compared to a longer slot [26]. By employing efficient
algorithms, which we elaborate on in the next section, our
solution update offloading decisions every few seconds. This
time interval is significantly smaller than the typical assumption
made by existing offloading algorithms, which usually operate
within time slots ranging from 1 to 5 minutes [27]. Each slot is
further divided into two stages: the offloading decision-making
stage, responsible for determining task offloading during the
slot, and the task offloading stage, which carries out the decided-
offloading tasks. We primarily concentrate on the decision-
making stage, as it represents the main technical challenges of
our approach.

Given the absence of powerful centralized servers, our
decision-making stage operates in a distributed manner, enabling
vehicles to independently make offloading decisions based on
their local information. This decentralized approach maximizes
the utilization of computing resources on individual vehicles
and reduces the time complexity of the problem, resulting in
prompt decision-making. However, since each vehicle possesses
only local information, the initial collective offloading decision
made by all vehicles may not guarantee satisfactory global
performance or comply with resource constraints imposed on
certain RSUs. To tackle this challenge, we incorporate feedback
from RSUs, enabling vehicles to make appropriate adjustments
to their offloading decisions. The following provides a detailed
elaboration of this process.

RSU side: Each RSU sj receives resource-utilization-request
(RUR) messages from each vehicle vi. An RUR message from vi

includes the required computing capacity on sj for vi, denoted
as ξi,j , as well as the output data size after the execution of tasks
offloaded from the vehicle. Based on this information, RSU sj
calculates the total required computing overhead, denoted as
λj , and determines the total energy consumption necessary for
transmitting the output results of all assigned tasks, denoted
as Ej . Simultaneously, sj measures the received power Ru

i,j

from each vi and estimates the uplink transmission rate from
vi to sj . Once this information is obtained, RSU sj broadcasts
its resource-utilization-status (RUS) messages. These messages
contain temporary results such as λj ,Ej , rui,j ,μj , and the energy
thresholdEmax

j of the RSU. It is important to note that λj andEj

are not the final computation capacity and energy consumption
required on sj but represent interim values based on the current
offloading decisions made by the vehicles.

Vehicle side: Each vehicle vi determines its offloading deci-
sion, represented by the offloading probability to any RSU sj ,
denoted as pi,j . Initially, a preliminary decision pi,j , ∀sj ∈ S
is made, and based on this decision, the required information
is calculated and included in the resource-utilization-request
(RUR) message, which is sent to each RSU sj . Subsequently, the
vehicle awaits the broadcast of resource-utilization-status (RUS)
messages from the RSUs, upon which it adjusts its offloading
decision accordingly. This iterative process continues until the
global performance converges to an optimal or near-optimal
state, as we will demonstrate later. Once this state is reached,
vehicle vi sends END messages to the RSUs and proceeds to
the task offloading stage. Our simulation results in Section V
demonstrate that only a small number (e.g., 5) of iterations are
required to achieve efficient offloading decisions for vehicles.

Detailed Algorithms: Our solution incorporates two types of
algorithms: one on the RSU side that processes information
from RUR messages and generates the necessary outputs for
RUS messages, and another on the vehicle side that determines
offloading decisions. In the following sections, we will first
formulate the problem. Subsequently, we propose algorithms
on the RSU side and the vehicle side, respectively (Section IV).
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B. Problem Formulation

We make offloading decisions for each vehicle every time slot
according to current network traffic and resource conditions.
Many applications places a requirement on the task response
time. Specifically, the response time of one task from vehicle vi
on RSU sj consists of its computation delay and transmission
delay:

Di,j = DC
i,j +DT

i,j =
δi

μj − λj
+

ζi
rvi,j

. (8)

Then, the average response time of all tasks in the system is
expressed as

D(p) =
1
Φ

∑
sj∈S

∑
vi∈V

pi,jφiDi,j

=
1
Φ

∑
sj∈S

( ∑
vi∈V pi,jφiδi

μj −
∑

vi∈V pi,jφiδi
+
∑
vi∈V

pi,jφiζi
rvi,j

)
,

(9)

where p = {pi,j}vi∈V,sj∈S denotes vehicles’ decisions in the
whole system.

The energy consumption of an RSU consists of its transmis-
sion energy consumption and computation energy consumption.
Thus, the total energy consumption of RSU sj in unit time is
given by

Ej = ET
j + EC

j =
∑
vi∈Vj

P d
j pi,jφiθi

rdi,j
+ κj

∑
vi∈Vj

pi,jφiδi

=
∑
vi∈Vj

pi,jφi

(
P d
j θi

rdi,j
+ κjδi

)
. (10)

Our problem is to making offloading decisions pi,· =
{pi,j}sj∈S for each vehicle vi ∈ V given the computation ca-
pacity and energy constraints of each RSU so as to minimize the
average response time of tasks in the system. We formulate our
task offloading problem as follows:

(P1) : minD(p) (11a)

s.t. λj < μj , ∀sj ∈ S (11b)

Ej ≤ Emax
j , ∀vi ∈ V (11c)∑

sj∈Si

pi,j = 1, ∀vi ∈ V (11d)

0 ≤ pi,j ≤ 1, ∀vi ∈ V, sj ∈ S. (11e)

The first set of inequalities (11b) means that the total compu-
tation requirement on an RSU should not exceed its computation
capacity. The second set of inequalities (11c) represents that the
energy consumption of each RSU in unit time does not exceed
an upper limit Emax

j . The third set of (11d) ensures that each
task will be offloaded to one and only one RSU. Our objective is
to minimize the average response time of all tasks in the system,
i.e., minD(p).

IV. ALGORITHM DESCRIPTION

In this section, we first convert the original problem P1
by leveraging exterior-point method (Section IV-A). Then we
propose a fully distributed algorithm for task offloading (FDTO),
which consists of two parts. One is for RSUs, called FDTO-S
(Section IV-B), and the other is for vehicles, called FDTO-V
(Section IV-C). We prove that the convergence for FDTO algo-
rithm (Section IV-D).

A. An Exterior-Point Based Optimization Problem

In order to facilitate the description of our distributed algo-
rithms and analyses, we first leverage exterior-point method to
transform the constraints of P1 to its optimization objective,
such that we can deal with the problem whose solution may
exceed the feasible region. Specifically, we construct two con-
straints (11b) and (11c) as an penalty function

N(p) =
∑
sj∈S

(max{0, λj − μj + ε})2

+
∑
sj∈S

(max{0, Ej − Emax
j })2, (12)

where ε is an arbitrarily small positive constant. This constant
guarantees that the solution will not exceed the boundary of the
feasible region of P1. We then add the penalty function N(p)
to the objective function as

F (p) = D(p) + L ·N(p), (13)

where L is a given large enough positive constant, called the
penalty factor. Thus, we convert the original problem to the
following optimization problem P2.

(P2) : minF (p) (14a)

s.t.
∑
sj∈Si

pi,j = 1, ∀vi ∈ V (14b)

0 ≤ pi,j ≤ 1, ∀vi ∈ V, sj ∈ S. (14c)

Because of the existence of L, if p is chosen such that λj ≤
μj − ε or Ej ≤ Emax

j is not satisfied for an arbitrary RSU sj ,
the value ofF (p)will be extremely large. Therefore, we can find
a optimal solution of P1 by solving P2 with a large enough L.

The main challenge to derive the optimal solution of P2 is
the incompleteness of information for vehicles in the distributed
scenario. It is difficult for a single vehicle to consider the compu-
tation capacity and energy constraint on an RSU, while making
delay-optimal decision, because it does not have full knowledge
of other vehicles’ decisions. To address this challenge, we design
the FDTO algorithms, such that each vehicle only needs to
consider the resource information of its neighboring RSUs.

B. RSU Side Algorithm (FDTO-S)

In this section, we propose the RSU side algorithm called
FDTO-S. In the decision making stage, RSUs collect RUR
messages from vehicles in each iteration, estimate their required
computation capacity, and broadcast RUS messages. Vectors
ξ
(t)
·,j = {ξ(t)i,j |vi ∈ Vj} and η

(t)
·,j = {η(t)i,j |vi ∈ Vj} represent the
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Algorithm 1: FDTO-S on RSU sj .

1: t = 0
2: while true do
3: Receiving RUR/END messages to get ξ(t)·,j and η

(t)
·,j

4: Measure the received power from vehicles
5: λ

(t)
j =

∑
vi∈Vj

ξ
(t)
i,j

6: E
(t)
j =

∑
vi∈Vj

(
Pd

j η
(t)
i,j

rdi,j
+ κjξ

(t)
i,j

)
7: for each vi ∈ Vj do

8: rui,j = B log2

(
1 +

Ru
i,j

σ2+
∑

v
i′ ∈Vj \{vi} R

u
i′,j

)
9: Broadcast RUS messages containing μj , Emax

j , rui,j ,

λ
(t)
j and E(t)

j

10: t = t+ 1

Algorithm 2: FDTO-V on Vehicle vi.
Input: RSU set Si, threshold ψ, step size β
Output: Final offloading decision pi,·
1: for each sj ∈ Si do
2: Initial offloading decision p(0)

i,j = 1
|Si|

3: Send RUR containing ξ(0)
i,j and η(0)

i,j to RSU sj
4: t = 0
5: while true do
6: Receive μi,·, E

max
i,· , λ

(t)
i,· and E

(t)
i,· from RSUs

7: Calculate D(t)
i by (15)

8: if t ≥ 1 and Conditions (16) are satisfied then
9: for each sj ∈ Si do

10: Send END message to sj
11: pi,· = p

(t)
i,·

12: return pi,·

13: Obtain decision p
(t+1)
i,· by FDTO-VG or FDTO-VX

14: for each sj ∈ Si do
15: ξ

(t+1)
i,j = p

(t+1)
i,j φiδi

16: η
(t+1)
i,j = p

(t+1)
i,j φiθi

17: Send RUR containing ξ(t+1)
i,j and η(t+1)

i,j to RSU sj
18: t = t+ 1

received RURs on RSU sj at iteration t. The required com-
putation capacity and the energy consumption of sj at iter-

ation t can be estimated by λ
(t)
j =

∑
vi∈Vj

ξ
(t)
i,j and E

(t)
j =∑

vi∈Vj
(
Pd

j η
(t)
i,j

rdi,j
+ κjξ

(t)
i,j ), respectively. Then sj broadcasts its

RUS messages containing μj , λ
(t)
j and E(t)

j to vehicles in Vj .
Note that if sj receives an END message from vi in iteration t, it
means that vi has obtain its final decision and begins to offload
tasks, then sj will set ξ(t

′)
i,j = ξ

(t)
i,j and η(t

′)
i,j = η

(t)
i,j , ∀t′ > t, in

the subsequent iterations. The FDTO-S algorithm is described
in Algorithm 1.

C. Vehicle Side Algorithm (FDTO-V)

We propose the vehicle side algorithm called FDTO-V. In
the following, we first introduce the algorithm initialization and

the termination condition. We then present a natural algorithm,
called FDTO-VG, with very simple computation. To reduce
the number of iterations for convergence, we further present a
convex optimization based algorithm (FDTO-VX) for decision
making.

1) Algorithm Initialization and Termination: At the begin-
ning, vehicle vi assigns the uniform offloading probabilities as
the initial values, i.e., p(0)

i,j = 1/|Si|, ∀sj ∈ Si. Then it sends

the initial RUR messages ξ(0)
i,j = p

(0)
i,jφiδi and η(0)

i,j = p
(0)
i,jφiθi to

each RSU sj ∈ Si.
At the end of iteration t, vehicle vi receives the RUS message

containing μj , Emax
j , λ

(t)
j and E

(t)
j from each RSU sj ∈ S.

Then it has the knowledge of the maximum computation ca-
pacitiesμi,· = {μj |sj ∈ Si}, the energy consumption threshold
Emax

i,· = {Emax
j |sj ∈ Si}, the estimates of the required com-

putation capacities λ
(t)
i,· = {λ(t)

j |sj ∈ Si}, the energy consump-

tion E
(t)
i,· = {E(t)

j |sj ∈ Si} and the uplink transmission rate
rvi,· = {rui,j |sj ∈ Si}. The average response time of tasks from
vi in iteration t is given by

D
(t)
i =

∑
sj∈Si

p
(t)
i,jD

(t)
i,j =

∑
sj∈Si

p
(t)
i,j

(
δi

μj − λ
(t)
j

+
ζi
rvi,j

)
.

(15)

We define a small positive threshold ψ, which determines the
required accuracy before algorithm termination. Then vi detects
the following three conditions:

λ
(t)
j ≤ μj − ε, ∀sj ∈ Si; (16a)

E
(t)
j ≤ Emax

j , ∀sj ∈ Si; (16b)

D
(t)
i < (1 + ψ)D

(t−1)
i . (16c)

Conditions (16a) and (16b) represent that as long as the
estimates of the required computation capacity or energy con-
sumption on an arbitrary RSU sj ∈ Si exceed its limits, vi
will continue a new iteration. Condition (16c) represents that
the performance difference between two successive iterations is
small.

If the above three conditions are satisfied, the iteration will
be terminated. vi uses p(t)

i,· as its final decision and sends END
messages to RSUs. Otherwise, vi makes a new offloading de-
cision p

(t+1)
i,· of iteration t+ 1. In Sections IV-C2 and IV-C4,

we will propose two solutions about how vehicles obtain the
new decision p

(t+1)
i,· (Line 13 in Algorithm 2). Then vi sends

an RUR message containing ξ(t+1)
i,j = p

(t+1)
i,j φiδi and η(t+1)

i,j =

p
(t+1)
i,j φiθi to each RSU sj ∈ Si. The FDTO-V algorithm is

formally described in Algorithm 2.
2) Greedy Based Algorithm (FDTO-VG): The idea of the

vehicle side FDTO-VG algorithm is to simply increase the
offloading probability of the optimal RSU and then greedily
decreases the probabilities of other RSUs, which will reduce the
average response time. From (5) and (13), the objective function
of iteration t is regarded as the following M ×N -variables
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continuous function of p(t):

F (p(t))

= D(p(t)) + L ·N(p(t))

=
1
Φ

∑
sj∈S

( ∑
vi∈V p

(t)
i,jφiδi

μj −
∑

vi∈V p
(t)
i,jφiδi

+
∑
vi∈V

p
(t)
i,jφiζi

ri,j

)

+ L ·
∑
sj∈S

⎡
⎣
⎛
⎝max

⎧⎨
⎩0,

∑
vi∈Vj

p
(t)
i,jφiδi − μj + ε

⎫⎬
⎭
⎞
⎠

2

+

⎛
⎝max

⎧⎨
⎩0,

∑
vi∈Vj

p
(t)
i,jφi

(
P d
j θi

rdi,j
+ κjδi

)
− Emax

j

⎫⎬
⎭
⎞
⎠2

⎤
⎦.

(17)

We compute the partial derivative of F (p(t)) with respect to p(t)i,j

as

∂F (p(t))

∂p
(t)
i,j

=
1
Φ

(
μjφiδi

(μj − λ
(t)
j )2

+
φiζi
ri,j

)

+ 2L ·

⎡
⎣max{0, φiδi(λ

(t)
j − μj + ε)}

+max

{
0, φi

(
P d
j θi

rdi,j
+κjδi

)
(E

(t)
j −Emax

j )

}⎤⎦

=
φi
Φ
Δ

(t)
i,j , (18)

where

Δ
(t)
i,j � μjδi

(μj − λ
(t)
j )2

+
ζi
rui,j

+ 2LΦ

⎡
⎣max{0, δi(λ

(t)
j − μj + ε)}

+max

{
0,

(
P d
j θi

rdi,j
+ κjδi

)
(E

(t)
j − Emax

j )

}⎤⎦
(19)

is defined as the Preference Index of RSU sj at iteration t on

vehicle vi. With the smaller value of Δ(t)
i,j , vi tends to assign

a larger offloading probability for sj in the next iteration (the

reason for adopting Δ
(t)
i,j as a preference indicator of sj on vi

will be demonstrated in Section IV-D). Note that as long as one of
the inequalities λ

(t)
j > μj − ε, E(t)

i > Emax
i and E(t)

j > Emax
j

is satisfied for sj , Δ(t)
i,j will be extremely large, which means

that sj is overloaded and vi will decrease the probability p(t+1)
i,j

in the next iteration.
Let sj∗ be the RSU whose Δ(t)

i,j∗ is minimum among all RSUs

in Si. Then, we derive a new offloading decision p
(t+1)
i,· for vi

as follows

⎧⎨
⎩
p
(t+1)
i,j = (1 − β)p

(t)
i,j , sj ∈ Si, j �= j∗

p
(t+1)
i,j∗ = p

(t)
i,j∗ + β

∑
j �=j∗ p

(t)
i,j , sj ∈ Si,

(20)

where β ∈ (0, 1] is a parameter named step size. This parameter
can help to 1) ensure that the transformation (20) will converge
by iterations; and 2) determine the convergence rate. We will
elaborate on this in Section IV-D.

3) An Example of FDTO-VG: To illustrate the distributed
iteration process more intuitively, we give a simple example of
our FDTO-VG algorithm, and the diagram is shown in Fig. 2.
For the sake of illustration, we assume that all RSUs have the
uniform computation capacity, all transmission channels have
the uniform coefficient, and all tasks are uniform, such that each
vehicle vi’s preference indicator Δi,j to each RSU sj will be
determined only by the task arrival rate λj on sj . We setβ=0.5 in
this example.

In Fig. 2, each vehicle can offload tasks to its neighboring
RSUs. For example, the tasks of v2 can be offloaded to s1,
s2 and s3, while those of v1 can only be offloaded to s1.
The task arrival rates of v1, v2, v3 and v4 are 16, 24, 8 and
30 tasks/s, respectively. At iteration 0, each vehicle offloads
the tasks to its neighboring RSUs uniformly. The estimates of
task arrival rates on s1, s2 and s3 are 24, 12 and 42 tasks/s,
respectively. Then each vehicle updates its probabilities based
on its preference indicators to RSUs. For example, from the
view of v2, it has Δ

(0)
2,2 < Δ

(0)
2,1 < Δ

(0)
2,3, so it reduces the of-

floading probabilities of s1 and s3 as p(1)
2,1 = 0.5 × p

(0)
2,1 and

p
(1)
2,3 = 0.5 × p

(0)
2,3, respectively, and increases the probability of

s2 as p(1)
2,2 = p

(0)
2,2 + 0.5 × (p

(0)
2,1 + p

(0)
2,3). As a result, the estimates

of task arrival rates on s1, s2 and s3 will be updated to 20, 22
and 36 tasks/s, respectively, at iteration 1. Finally, the algorithm
will converge at iteration 5. Note that convergence does not
mean that Δ(t)

i,1 = Δ
(t)
i,2 = . . . = Δ

(t)
i,m for each vi. For example,

considering that Δ(5)
2,1 = Δ

(5)
2,2 < Δ

(5)
2,3, v2 is not able to increase

probabilities to s1 and s2, because p(5)
2,3 = 0. Otherwise, the total

probabilities of all RSUs for v2 will exceed 1.
4) Convex Optimization Based Algorithm (FDTO-VX): In

FDTO-VG, the adjustment of offloading decision in each it-
eration is not refined enough, which requires more iterations
for convergence. In this section, we design another vehicle side
algorithm which is more precise and converges faster—convex
optimization based algorithm (FDTO-VX).

After a vehicle vi receives μi,·, λ
(t)
i,· and E

(t)
i,· from RSUs in

iteration t, it supposes that other vehicles’ offloading decisions
are static (actually, a vehicle cannot obtain the offloading de-
cisions of others in our framework). Then, vehicle vi adopts
p̂
(t+1)
i,· = {p̂(t+1)

i,1 , . . .p̂
(t+1)
i,m } as its offloading decision at itera-

tion t+ 1. From the view of vi, the estimate of the required com-
putation capacity on sj is λ̂

(t+1)
j = λ

(t)
j − p

(t)
i,jφiδi + p̂

(t+1)
i,j φiδi

at iteration t+ 1. Thus, the estimated average response time of
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Fig. 2. Example of FDTO-VG.

tasks from vehicle vi at iteration t+ 1 is given by

D̂
(t+1)
i =

∑
sj∈Si

p̂
(t+1)
i,j D̂

(t+1)
i,j

=
∑
sj∈Si

p̂
(t+1)
i,j

(
ζi
ri,j

+
δi

μj − λ̂
(t+1)
j

)

=
∑
sj∈Si

p̂
(t+1)
i,j

(
ζi
ri,j

+
δi

μj−λ
(t)
j +p

(t)
i,jφiδi−p̂

(t+1)
i,j φiδi

)
.

(21)

To minimize the average response time of tasks fromvi, p̂
(t+1)
i,·

can be obtained by the following problem:

(P3) : min D̂
(t+1)
i (22a)

s.t.
∑
sj∈Si

Δ
(t)
i,j p̂

(t+1)
i,j ≤

∑
sj∈Si

Δ
(t)
i,jp

(t)
i,j (22b)

∑
sj∈Si

p̂
(t+1)
i,j = 1 (22c)

0 ≤ p̂
(t+1)
i,j ≤ 1, ∀sj ∈ Si. (22d)

The first inequality (22b) ensures that the adjustment of of-
floading decision gives a descent direction for average response
time, which will be elaborated in Section IV-D. P3 is a convex
problem, and can be solved by deploying the CVXPY pack-
age [28] on each vehicle.

p̂
(t+1)
i,· is called a selfish decision for vi at iteration t+ 1.

Note that when all vehicles make selfish decisions, there is no
guarantee that the system average response time will decrease.
We use a step size β to limit the decision adjustment. The
offloading decision p

(t+1)
i,· of vi at iteration t+ 1 is given by

the following equation

p
(t+1)
i,· = (1 − β)p

(t)
i,· + βp̂

(t+1)
i,· , (23)

where the step size β ∈ (0, 1] has the same effect as that in
Section IV-C2.

5) An Example of FDTO-VX: Similar to FDTO-VG, we
give an example of FDTO-VX in this section. Given the same
network scale, since the value of β in FDTO-VX can be as-
signed with a larger value than that in FDTO-VG to obtain

better convergence (Section V for details), we set β=1 in this
example.

In Fig. 3, each vehicle obtains its selfish decision in each
iteration by solving P3. For example, from the view of v2, its
selfish decision at iteration 1 is p(1)

2,1 = 0.25, p(1)
2,2 = 0.75 and

p
(1)
2,3 = 0, such that its estimated task arrival rates on s1, s2 and
s3 will be 22, 22 and 32 tasks/s, respectively. However, from
the view of v3, its selfish decision at iteration 1 is p(1)

3,2 = 1 and

p
(1)
3,3 = 0, such that its estimated task arrival rates on s2 and s3

are 18 and 38 tasks/s, respectively. At last, the task arrival rates
on s1, s2 and s3 is 22, 26 and 30 tasks/s, respectively, at iteration
1. And so on, the algorithm will converge at iteration 2.

D. Convergence Analysis

In this section, we will prove that our algorithms will converge
to the global optimal. We denote p(t) = {p(t)i,j |∀vi ∈ V, ∀sj ∈
S} as the task offloading decisions of all vehicles at iteration t.
After vehicles send RUR messages following p(t) and receive
RUS messages from RSUs, they execute the FDTO-V algorithm
to obtain the offloading decisions p(t+1) at iteration t+ 1. The
transformation of p can be expressed as

p(t+1) = T (p(t)). (24)

If p∗ = T (p∗), we call that p∗ is a fixed point of iterative con-
vergence of (24). If vehicles execute the FDTO-VG algorithm,
we denote one iteration transformation of p as TG. Similarly, if
the FDTO-VX algorithm is performed, it is denoted as TX .

Lemma 1: If p(t) �= p∗, TG(p(t)) gives a descent direction at
p(t) for F (p(t)), i.e.,

〈
∇F (p(t)), TG(p(t))− p(t)

〉
< 0,

where symbol ∇ is the gradient operator, and 〈a, b〉 denotes the
inner product of vectors a and b.

Proof: We compute the partial derivative of F (p(t)) with

respect to p(t)i,j as ∂F (p(t))

∂p
(t)
i,j

= φi

Φ Δ
(t)
i,j , where Δ

(t)
i,j is defined by

(19). So,
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Fig. 3. Example of FDTO-VX.

〈
∇F (p(t)), TG(p(t))− p(t)

〉

=
1
Φ

∑
p
(t)
i,j∈p(t)

φiΔ
(t)
i,j (p

(t+1)
i,j − p

(t)
i,j )

=
1
Φ

∑
vi∈V

φi
∑
sj∈Si

Δ
(t)
i,j (p

(t+1)
i,j − p

(t)
i,j ). (25)

According to Section IV-C2, for vehicle vi, sj∗ is the RSU

such that Δ(t)
i,j∗ is the minimum of Δ(t)

i,j , sj ∈ Si. That is, for any

RSU sj ∈ Si, it follows Δ(t)
i,j∗ ≤ Δ

(t)
i,j . Then,

Δ
(t)
i,j∗

∑
sj∈Si,j �=j∗

p
(t)
i,j ≤

∑
sj∈Si,j �=j∗

Δ
(t)
i,jp

(t)
i,j . (26)

By (20) and (26), we can deduce that∑
sj∈Si

Δ
(t)
i,jp

(t+1)
i,j = Δ

(t)
i,j∗p

(t+1)
i,j∗ +

∑
sj∈Si,j �=j∗

Δ
(t)
i,jp

(t+1)
i,j

= Δ
(t)
i,j∗

⎛
⎜⎜⎝p(t)i,j∗ + β

∑
sj∈Si,
j �=j∗

p
(t)
i,j

⎞
⎟⎟⎠+

∑
sj∈Si,
j �=j∗

Δ
(t)
i,j (1 − β)p

(t)
i,j

=
∑
sj∈Si

Δ
(t)
i,jp

(t)
i,j + β

⎛
⎜⎜⎝Δ

(t)
i,j∗

∑
sj∈Si,
j �=j∗

p
(t)
i,j −

∑
sj∈Si,
j �=j∗

Δ
(t)
i,jp

(t)
i,j

⎞
⎟⎟⎠

≤
∑
sj∈Si

Δ
(t)
i,jp

(t)
i,j . (27)

Since F (p(t)) is convex and p(t) �= p∗, there exists vi and
sj ∈ Si such that Δ(t)

i,j > Δ
(t)
i,j∗ . So there exists at least one vehi-

cle vi withΔ(t)
i,j∗
∑

sj∈Si,j �=j∗ p
(t)
i,j <

∑
sj∈Si,j �=j∗ Δ

(t)
i,jp

(t)
i,j , such

that
∑

sj∈Si
Δ

(t)
i,jp

(t+1)
i,j <

∑
sj∈Si

Δ
(t)
i,jp

(t)
i,j . Hence, 〈∇F (p(t)),

TG(p(t))− p(t)〉 < 0.
Lemma 2: If p(t) �= p∗, TX(p(t)) gives a descent direction at

p(t) for F (p(t)), i.e.,〈
∇F (p(t)), TX(p(t))− p(t)

〉
< 0.

Proof: Similar to Lemma 1,〈
∇F (p(t)), TX(p(t))− p(t)

〉

=
1
Φ

∑
vi∈V

φi
∑
sj∈Si

Δ
(t)
i,j (p

(t+1)
i,j − p

(t)
i,j ). (28)

By (22b) and (23),∑
sj∈Si

Δ
(t)
i,jp

(t+1)
i,j =

∑
sj∈Si

Δ
(t)
i,j ((1 − β)p

(t)
i,j + βp̂

(t+1)
i,j )

≤
∑
sj∈Si

Δ
(t)
i,j ((1 − β)p

(t)
i,j + βp

(t)
i,j )

=
∑
sj∈Si

Δ
(t)
i,jp

(t)
i,j . (29)

As (17) is convex, if
∑

sj∈Si
Δ

(t)
i,jp

(t+1)
i,j =

∑
sj∈Si

Δ
(t)
i,jp

(t)
i,j ,

we can deduce that TX(p(t)) = p(t), and p(t) = p∗. Hence,∑
sj∈Si

Δ
(t)
i,j p̂

(t+1)
i,j <

∑
sj∈Si

Δ
(t)
i,jp

(t)
i,j , and 〈∇F (p(t)),

TX(p(t))− p(t)〉 < 0 also holds.
Lemma 3: ForTG andTX , ifp(t) �= p∗, there existsβ ∈ (0, 1]

such that F (p(t+1)) < F (p(t)).
Proof: If p(t) �= p∗, according to the definition of the fixed

point, p(t+1) = T (p(t)) �= p(t). We regard p(t+1) as a variable
vector that varies with the value of parameter β, denoted as
p(t+1)(β). p(t) is a constant vector when β = 0, which means
the offloading decisions of iteration t+ 1 are same as those of
iteration t, i.e., p(t+1)(0) = p(t). By the definition of F (p(t))
in (17), F (p(t+1)) is differentiable for each component of
p(t+1). Since both (20) and (23) are linear transformations,
the components of p(t+1) can be differentiable on β. Thus,
F (p(t+1)) is differentiable on β, too. To simplify expression,
we defineG(β) = F (p(t+1)(β)) as a function of β, andG(0) =
F (p(t+1)(0)) = F (p(t)).

Assume that ∀β ∈ (0, 1], G(β) ≥ G(0), i.e., F (p(t+1)) ≥
F (p(t)). On one hand,

G′(0+) = lim
β→0+

G(β)−G(0)
β − 0

≥ 0. (30)

On the other hand, by chain rule,

G′
β =

∑
pi,j∈p(t+1)

∂F

∂p
(t+1)
i,j

·
∂p

(t+1)
i,j

∂β

=
〈
∇F (p(t+1)), (p(t+1))′β

〉
. (31)

By Lemmas 1 and 2, for β → 0+,

G′(0+) = G′
β |β→0+

= lim
β→0+

〈
∇F (p(t+1)),

p(t+1)(β)− p(t+1)(0)
β

〉

= lim
β→0+

〈
∇F (p(t)), T (p(t))− p(t)

〉
β

< 0, (32)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 28,2024 at 07:56:42 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: FULLY DISTRIBUTED TASK OFFLOADING IN VEHICULAR EDGE COMPUTING 5639

which is a conflict with inequation (30). As a result, the as-
sumption is false. That is, there exists β ∈ (0, 1] such that
F (p(t+1)) < F (p(t)).

Theorem 1: For TG and TX , suppose that β makes
F (p(t+1)) < F (p(t)). Then p(t) can converge to p∗, i.e.,
limt→+∞ p(t) = p∗. In addition, p∗ is the optimal solution of
problem (P2).

Proof: F (p(t)) is a monotonically decreasing sequence in
t and F (p(t)) > 0, so F (p(t)) will converge. Suppose that
limt→+∞ p(t) = p′, p′ �= p∗, according to Lemma 3, if p′ �= p∗,
there exists β ∈ (0, 1] such that F (p′) decreases again. So
limt→+∞ p(t) = p∗. In addition, suppose that there exists p′′

such that T (p′′) �= p′′, and p′′ is the vector with the minimum
value of F (p). According to Lemmas 1–3, T (p′′) gives a
descent direction at p′′, and there exists a β ∈ (0, 1] such that
F (T (p′′)) < F (p′′). It’s a contradiction. So, p∗ is the optimal
solution of problem P2.

E. Discussion

1) Time Complexity Analysis: The original problem P1 is
a mixed integer nonlinear programming (MINLP) problem.
Solving P1 centrally requires a controller to know the resource
usage state of m RSUs and to make offloading decisions for
all n vehicles, which has a time complexity of O(H(mn)).
Here, H(x) is the completion time for solving an MINLP
problem of scale x, which depends on the method used, such
as the branch and bound (BB) algorithm [29] or learning-based
method [12], [30]. For game-based distributed schemes, the
time complexity is O(nH(m)), which is also related to the
number of vehicles. In contrast, our FDTO-VG algorithm only
requires each vehicle to perform a simple linear calculation (20)
in each round to make its own offloading decision, resulting in
a time complexity of O(k), where k is the number of iterations.
Similarly, our FDTO-VX algorithm requires each vehicle to
solve an MINLP problem P3 of scale m in each round, leading
to a time complexity of O(kH(m)). Our experimental results
in Section V will demonstrate that the number of iterations k
is much smaller than the number of vehicles n. Therefore, we
can conclude that our FDTO-VG and FDTO-VX algorithms
outperform the existing algorithms significantly in terms of time
complexity.

2) Impact of β on System Performance: Our simulation re-
sults in Section V-C1 show the impact of β on the system
performance, such as the number of iterations for convergence
and the task response time. We briefly analyze these simulation
results and propose the improved algorithm.

The choice of parameterβ is crucial for both vehicle side algo-
rithms. To guarantee convergence, the magnitude of β depends
on the task arrival rate in the system. When the task arrival rate
is much slower than the processing rate of RSUs in the system, a
large value of β (e.g., 0.5–1) can speed up the convergence rate
for both FDTO-VG and FDTO-VX.

However, we also concern about the situation where the
required computation resource is close to the RSUs’ capacity.
Our simulation results show that the performance of FDTO-VG

Algorithm 3: FDTO-VC to obtain p
(t+1)
i,· .

1: if
∑

sj∈Si
ρ
(t)
j μj/

∑
sj∈Si

μj ≤ α then
2: // Execute the FDTO-VG Algorithm
3: Find sj∗ such that Δ(t)

i,j∗ = min{Δ(t)
i,j}sj∈Si

4: Obtain offloading decision p
(t+1)
i,· by (20)

5: else
6: // Execute the FDTO-VX Algorithm
7: Solve problem P2 to obtain p̂

(t+1)
i,·

8: Obtain offloading decision p
(t+1)
i,· by (23)

is not completely satisfied when the offloading request rate is
high. On one hand, if a small value of β (e.g., 0.01–0.05) is
chosen, the algorithm will achieve a shorter task response time
after multiple iterations, because offloading decisions will be
slightly adjusted in each iteration. However, it will take a large
number of iterations to exchange information between vehicles
and the RSUs (4 ms per iteration in our simulation), which leads
to a long decision making time. On the other hand, given a
large value of β, the algorithm will not converge to a good
level, because the adjustment way of FDTO-VG is relatively
rough.

On the contrary, if the value of β is properly chosen, FDTO-
VX not only needs a fewer number of iterations for convergence
than FDTO-VG, but also achieves a smaller task response time.
Nevertheless, vehicles take about 10 ms to solve a convex opti-
mization problem in each iteration when running the FDTO-VX
algorithm according to our evaluation on the testbed with a core
i7-3770 processor, while the computing time of FDTO-VG on
vehicles can be ignored because FDTO-VG only involves linear
operations.

3) Algorithm Improvement: We combine the advantages
of both FDTO-VG and FDTO-VX. Usually, the required
computation capacity on an RSU is much less than its maximum
computation capacity due to the imbalance of task offloading
requests in the system. Though FDTO-VG and FDTO-VX will
converge with similar number of iterations in this case, FDTO-
VG takes less time for each iteration for its simple computation.
In addition, if the requested computation capacity is close to
or even exceeds the RSUs’ capacity, FDTO-VX will achieve
convergence in a fewer number of iterations which leads to less
decision making time. We combine FDTO-VG and FDTO-VX
into an algorithm FDTO-VC, which is formally described in
Algorithm 3. The choice of which algorithm on vehicle vi

depends on the following judgment: if
∑

sj∈Si
λ
(t)
j

∑
sj∈Si

μj
≤ α, vi runs

FDTO-VG at iteration t+ 1; Otherwise, vi runs FDTO-VX. It is
expected to obtain a α ∈ [0, 1), named activation boundary, to
achieve satisfactory system performance, i.e., a short decision
making time no matter the task arrival rate of vehicles. If
vehicles execute the FDTO-VC algorithm, we denote one
iteration transformation of p as TC .
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Theorem 2: The iterative transformation of p with TC(p) can
make F (p) converge.

Proof: We can be easily obtained the convergence of TC(p)
by the convergence of TG and TX in Theorem 1.

4) Potential Modeling Inaccuracy in Practice: In Section II,
we adopt the queuing theory and the Shannon capacity to model
the computation time and the transmission time, respectively,
for the sake of theoretical analysis and simulation. However,
these models may not capture the dynamic and complex nature
of wireless networks, and thus the task completion time in
reality may deviate from these mathematical mappings. One
possible way to overcome this challenge is to use deep reinforce-
ment learning (DRL) [12], which can build a policy network
according to various factors in the actual environment, and
address the difficulty of finding the optimal mapping between
environment and decisions to minimize the response time. In
our future work, we aim to implement FDTO algorithm in a
practical system, and apply DRL to FDTO algorithm to update
the decision p̂

(t+1)
i,· at each iteration based on the environment

information.
5) Communication Disruption Caused by Mobility: Vehicle

mobility in the wireless environment may cause communication
disruption between vehicles and RSUs. Our system workflow
can be easily extended to solve this problem by applying triggers
properly to govern handover management control. For example,
when a vehicle vi leaves the transmission range of an RSU
or occurs failure connection in a time slot, it will immediately
update its communicated RSU set Si, and run the vehicle side
algorithm FDTO-V to obtain a new offloading decision, rather
than waiting for the end of the current slot. The decision making
delay is short so that it will not significantly influence with
the offloading of new-arrival tasks. Our simulation results in
Section V show that as long as only a small percentage of
vehicles are involved in communication handover within a time
slot, the overall performance has little influence.

V. NUMERICAL EVALUATION

A. Simulation Settings

We simulate a typical vehicle network scenario. All simu-
lations are performed on a desktop computer with an Intel(R)
Core(TM) i7-3770 CPU running at 3.4 GHz and 8 GB RAM. The
operating system is Ubuntu 18.04 LTS. The simulation software
is Python 3.7. The settings of some important parameters are
listed in Table III.

Scenario: We simulate a 5 km × 5 km square city area with
a total road length of 50 km divided by 50 × 50 grids [31].
We assume that a road side unit (RSU), i.e., an access point, is
deployed in the exact center of each road grid, so totally 500
RSUs are deployed. Each RSU is equipped with an MEC RSU,
whose maximum computation capacity and energy constraint
are set as 5 GHz and 80 W, respectively.

Channel Mode: To adapt to the simulation scenario, the wire-
less access technique between vehicles and RSUs is based on
IEEE 802.11p standard with 10 MHz channel bandwidth [32].

TABLE III
SETTINGS OF SOME SYSTEM PARAMETERS

The channel gain for calculating the wireless transmission
is modeled by the path-loss hi,j = h0d

−4
i,j model [34], where

h0 = −40 dB is the path-loss constant and di,j is the distance
between vehicle ui and RSU sj . The transmission power of each
vehicle is set as Pu

i = 100 mW, and the noise power is set as
σ2 = −100 dBm [6]. In the decision making stage, vehicles and
RSUs transmit packets (1554 Bytes [33]) to exchange RUR and
RUS messages.

Traffic: We simulate the number of vehicles as 2,000, 4,000,
6,000, 8,000, 10,000 randomly distributed on the road of the
simulated city area. They travel at random speeds from 40 km/h
to 80 km/h. Each vehicle will pick a random direction when it
comes to an intersection. For any vehicle, its task generation
follows a Poisson process. Unless otherwise specified, the ex-
pected input data size of each task is 0.1 Mb, and the result data
size is set to be drawn evenly from 0% to 200% of the task’s
input size. The expected required number of CPU cycles of one
task is 100 M. Consider that the transmission power of RSUs is
33 dBm, the energy consumption for performing one CPU cycle
on an RSU is randomly drawn from [10,50] nJ.

B. Benchmarks and Performance Metrics

We choose three offloading algorithms as benchmarks.
Centralized Task Offloading (CTO): A centralized controller

has the whole knowledge of the network information and collects
the requirements of vehicles, then it solves the problem P1
to obtain the offloading decisions, aiming to achieve optimal
average delay in the system, called CTO-DO. CTO-DO can
also be regarded as a lower bound of average response time
of our problem. Correspondingly, the algorithm that optimizes
total energy consumption is called CTO-EO. For comparison,
we assume that all tasks will be offloaded only to the RSUs for
processing.

Multi-armed Bandit (MAB) [18]: A distributed decision so-
lution based on multi-armed bandit which optimizes the task
response time with only local information.
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Fig. 4. Average response time vs. iterations with different ψ.

Noncooperative Game based Task Offloading (NGTO): An-
other distributed task offloading algorithm is based on a non-
cooperative game [16]. Specifically, vehicles run this algorithm
with a round-robin fashion in turn. In each round, a vehicle needs
to obtain offloading decisions of other vehicles and executes
best-response algorithm based on the collected information.
Then it sends its offloading decision to other vehicles imme-
diately. This process will terminate until a Nash equilibrium is
reached.

We use the following metrics in our numerical evaluation to
demonstrate the efficiency of our solutions.

Average Response Time: After offloading decisions of vehi-
cles are confirmed, we can obtain the average response time of
all tasks in the whole system.

Average Energy Consumption: We also compare the average
energy consumption among all RSUs in the system with other
benchmarks.

Decision Making Time: Decision making time of a solution
consists of two parts: the algorithm’s running time on devices
(vehicles or RSUs) and transmission time among devices in the
decision making stage. In MAB and our solutions, the transmis-
sion time occur in the data transmission between vehicles and
RSUs. In CTO, the decision time occurs when the centralized
controller collects the requests from vehicles and sends the
decisions back. In NGTO, it occurs in the process that vehicles
take turns to send their offloading decisions to others.

C. Simulation Results

1) Parameter Matching: In this section, we evaluate the
impact of some parameters on the decision making time of
our algorithms, including the threshold ψ, the average task
arrival rate of vehicles φ = Φ/|U |, the step size β and the
activation boundary α. The selection of different algorithms and
parameters results in different number of iterations and time of
one iteration, which determine the decision making time. There
are 10,000 simulated vehicles in total in the simulations. As
a comparison, we assume that there is a centralized controller
which has the whole knowledge of the network and solves
the problem P1 to provide the optimal solution (CTO-DO).
Figs. 4–10 show the changing trend of task average response
time as the number of iterations increases. In general, with more
iterations, the algorithms will decrease the average response
time through efficiently adjusting offloading decisions. But the
convergence trend varies with the different parameter values.

Fig. 4 shows the impact of threshold ψ on the convergence
performance of FDTO-VX (FDTO-VG has similar trend). In

Fig. 5. Average response time vs. iterations with φ = 0.5.

Fig. 6. Average response time vs. iterations with φ = 1.

Fig. 7. Average response time vs. iterations using FDTO-VG.

this simulation, we set φ=1 task/s and β=0.05. It shows that,
if ψ is set as 0.1, the algorithm prematurely converges after 3
iterations, and the average task response time is 65.1 ms, far
larger than the optimal result (i.e., 45.5 ms). When ψ is set as
0.01, the algorithm converges after 6 iterations with average
response time of 50.3 ms. When ψ is 0.001, the algorithm will
not converge even after 16 iterations, since the difference in
average task response time of vehicles between two adjacent
iterations is rarely be less than such a small threshold. Based on
this observation, we experientially set the threshold ψ as 0.01 in
all subsequent simulations.

Figs. 5 and 6 show the convergence performance of both
vehicle side algorithms when the average task arrival rate of
vehicles φ is set as 0.5 and 1 tasks/s, respectively. As shown
in Fig. 5, when the task arrival rate is much lower than the
RSU’s computation capacity, both FDTO-VG and FDTO-VX
will converge after only 2 iterations. However, when the task
arrival rate is set as 1 tasks/s in Fig. 6, FDTO-VG requires more
than 16 iterations to achieve convergence, while FDTO-VX only
requires 6 iterations. Therefore, we set φ as 1 task/s in the
subsequent simulations.

Figs. 7–9 display the impact of the step size β on the per-
formance of vehicle side algorithms FDTO-VG, FDTO-VX and
FDTO-VC, respectively. Fig. 7 shows the convergence perfor-
mance of FDTO-VG when the value of β is chosen as 0.01,
0.05 and 0.1, respectively. When β = 0.01, FDTO-VG requires
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Fig. 8. Average response time vs. iteration using FDTO-VX.

Fig. 9. Average response time vs. iterations using FDTO-VC.

Fig. 10. Average response time vs. iterations using FDTO-VC.

more than 25 iterations to achieve convergence. For example,
the average response time is 53.1 ms after 25 iteration, while the
average response time of CTO-DO is 45.5 ms. When β is set
as 0.05, FDTO-VG requires 20 iterations to achieve satisfactory
convergence, and its average response time is 49.7 ms after 20
iterations. When β is 0.1, the average response time fluctuates
between 50 ms and 70 ms after 2 iterations. It shows that
FDTO-VG can converge when the value ofβ is small, but a small
value of β will result in more iterations for convergence. On
the other hand, FDTO-VG may not converge given a relatively
large β. Fig. 8 shows the changing trend of average response
time of FDTO-VX when the value of β is set as 0.05, 0.1
and 0.2, respectively. Specifically, FDTO-VX requires about 9,
5, and 5 iterations to converge when β is 0.05, 0.1 and 0.2,
respectively. For example, when β is 0.1, the average response
time of FDTO-VX is 50.7 ms after 5 iterations, which is very
close to that of CTO-DO. It shows that FDTO-VX will converge
faster than FDTO-VG given a larger value of β. Fig. 9 shows
the convergence performance of FDTO-VC (α=0.4) when the
value of β is set as 0.05, 0.1 and 0.2, respectively. As shown
in this figure, FDTO-VC requires about 8, 6, 4 iterations to
achieve satisfactory convergence when β is 0.05, 0.1 and 0.2,
respectively. It shows that FDTO-VC has similar convergence
performance with FDTO-VX.

Fig. 10 shows the impact of the activation boundary α on
the performance of FDTO-VC. In this simulation, we specify
β=0.05. As shown in this figure, on one hand, when α=0.8,

Fig. 11. The optimal β vs. number of RSUs.

FDTO-VC requires a large number (more than 16) of iterations
to achieve convergence. On the other hand, when α is set as 0.2,
0.4 or 0.6, it requires less (about 5-8) iterations for convergence.

Fig. 11 shows the optimal value of β when the number of
RSUs increases from 10 to 1000. In this simulation, we set
the ratio of the number of vehicles to the number of RSUs
as 20, i.e., n

m = 20, and the task arrival rate of each vehicle
is set as 1 task/s. As shown in Fig. 11, as the number of RSUs
increases in magnitude, the optimal β value gradually decreases.
For example, when there are only 10 RSUs, the optimal β’s of
FDTO-VG and FDTO-VX are 0.3 and 0.5, respectively, while
with 1000 RSUs, the optimal β’s of them are 0.04 and 0.08
respectively. The simulation results show that the optimal β
usually depends on the network scale. Generally, in a large-scale
network, when a tremendous amount of vehicles make decisions
simultaneously, a large step size β can easily cause the decision
to converge fast or oscillate near the optimal (as shown in Fig. 7).
On the contrary, a small β will contribute to make the decision
gradually approach the optimal but with a slow pace.

Table IV summarizes the decision making time of different
vehicle side algorithms. When the average task arrival rate is
0.5 tasks/s, all algorithms will converge in 2 iterations. When the
average task arrival rate is increased to 1 tasks/s, it becomes more
complicated. One iteration takes around 4 ms (i.e., negligible
execution time on vehicles/RSUs and 4 ms for transmission) for
FDTO-VG and 14 ms (i.e., 10 ms for execution and 4 ms for
transmission) for FDTO-VX. As a result, the decision making
time cannot be less than 70 ms in both the algorithms. For FDTO-
VC, no matter which vehicle executes FDTO-VX, the iteration
time is 14 ms. On the contrary, if all vehicles execute FDTO-VG,
the iteration time shrinks to 4 ms. We find that when α is set as
0.4, 0.6 or 0.8, the first iteration takes 14 ms and the others take
4 ms, because vehicles’ request computation resources are more
balanced after the first iteration, and all vehicles will execute
FDTO-VG. But when α is set as 0.2, each iteration takes 14 ms,
since the boundary is too low such that at least one vehicle will
execute FDTO-VX in each iteration. The table shows that when
α is set from 0.4-0.6, we can choose a proper value of β such that
the decision making time can be less than 50 ms. For example,
whenα=0.4 andβ=0.1, the decision making time is only 34 ms.

2) Performance Comparison With Benchmarks: In this sec-
tion, we simulate the algorithms in non-mobility scenarios,
because CTO and NGTO do not fit for the mobile application
scenarios. In this and the next section, we use FDTO-VC as our
vehicle side algorithm.
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TABLE IV
VEHICLE SIDE ALGORITHM COMPARISON

Fig. 12. Average response time vs. task arrival rate.

Fig. 12 shows that the average response time is increasing
with higher task arrival rate. When the average task arrival rate
of vehicles is low, such as 0.2–0.4 tasks/s, system resource is
sufficient so that the average response time of all algorithms is
almost the same. But when the average task arrival rate of vehi-
cles is getting higher and system resource becomes insufficient,
the average response time of MAB grows rapidly, while our
FDTO algorithm gets a little worse performance than CTO-DO
and NGTO. For example, when the task arrival rate is 1 tasks/s,
the average response time of MAB, CTO-EO, FDTO, NGTO
and CTO-DO is 111.8 ms, 70.3 ms, 49.22 ms, 47.24 ms and
45.5 ms, respectively.

In practice, there are different types of applications with
different data sizes for their tasks. Fig. 13 shows the average
response time as the magnitude of input data size increases
from 0.1Mb/task to 10Mb/task. In this simulation, we set the
required CPU cycles per-task is constant 100 M. As shown in this
figure, task response time increases with the input data size, as it
causes the increase of transmission delay. However, our FDTO is
much better than MAB and CTO-EO at different input data size
per-task. For example, when the input data size is 10Mb/task,
the average response time of MAB, CTO-EO, FDTO, NGTO

Fig. 13. Average response time vs. input data size.

Fig. 14. Average response time vs. task arrival rate.

and CTO-DO is 1112.2 ms, 511.2 ms, 153.4 ms, 148.1 ms and
143.2 ms, respectively.

As the task arrival pattern in the real-world system may
not follow the assumed Poisson process, we also simulate our
algorithm with different task arrival patterns. Fig. 14 shows the
average response time of MAB and FDTO with task Poisson
arrival and Bursty arrival, respectively. As shown in this figure,
the average response time of MAB and FDTO with Bursty arrival
is higher than that with Poisson arrival. This is because when
the bursts occur, there will be more tasks queuing, resulting in
higher computation delay. However, our FDTO algorithm can
reduce average response time compared to MAB with both the
two task arrival patterns. For example, when the task arrival rate
is 1 tasks/s, the average response time of MAB (Bursty), MAB
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Fig. 15. Decision making time vs. number of vehicles.

Fig. 16. Average energy consumption vs. task arrival rate.

(Poisson), FDTO (Bursty) and FDTO (Poisson) is 188.24 ms,
111.8 ms, 67.23 ms and 49.22 ms, respectively.

Fig. 15 shows the decision making time of different algorithms
with the increasing number of vehicles. As shown in this figure,
the decision making time of NGTO, CTO-DO and CTO-EO
almost linearly increases with the increasing number of vehi-
cles. Vehicles in MAB require only one iteration information
exchange to get RSUs’ resource status, so its delay is only
4 ms. The decision making time of both the FDTO and MAB
algorithms almost remains static with the increasing number of
vehicles, so it is robust to the network size. For example, when
there are 10,000 vehicles in the system, the decision making time
of CTO-EO, CTO-DO, NGTO, FDTO and MAB is 112,397 ms,
104,691 ms, 36,759 ms, 31 ms and 4 ms, respectively, which in-
dicates that CTO and NGTO cannot provide real-time offloading
decisions for highly dynamic and large-scale edge computing
systems.

Fig. 16 shows that the average energy consumption increases
almost linearly with the increase of the task arrival rate. At
the same task arrival rate, the average energy consumption of
other algorithms is almost the same except CTO-EO. The energy
consumption of our FDTO algorithm is 24.9% higher than that
of CTO-EO. For example, when the task arrival rate is 1 tasks/s,
the average energy consumptions of CTO-DO, NGTO, FDTO,
MAB and CTO-EO are 59.9 W, 59.5 W, 59.1 W, 57.2 W and
47.3 W, respectively.

3) Impact of Mobility and Dynamics on Offloading: We sim-
ulate a scenario where 10,000 vehicles are driving through the
simulated city area, and they pick a random direction when they
come to an intersection. The task generation of each vehicle
follows a Poisson process with arrival rate 1 task/s. In each time
slot, the system updates the offloading decisions for each vehicle
regularly. If a vehicle leaves the transmission range of an RSU
or failure connection occurs in a time slot, it will run the vehicle
side algorithm to obtain a new offloading decision, rather than
waiting till the end of the current slot.

Fig. 17. Average response time vs. average vehicle speed.

Fig. 18. Average response time vs. time.

Fig. 17 shows the average response time when the average
speed of vehicles increases from 20 km/h to 100 km/h given
time slots of 1 s, 5 s and 10 s, respectively. In this figure,
when the vehicles’ average speed is low, it still keeps effective
even with a relatively long time slot (e.g., 10 s). For example,
when the average speed is 20 km/h, the average response time
is 47.6 ms, 50.6 ms and 52.3 ms for time slots of 1 s, 5 s and
10 s, respectively. However, when the vehicle speed is high, the
short time slot is needed so as to achieve good performance.

Fig. 18 shows the dynamic change of average response time
of both MAB and FDTO algorithms when time slot τ is set as
5 s, 10 s or 15 s, respectively. Each vehicle travels at speeds
randomly drawn from 40–80 km/h. We observe the average
response time of tasks over time for 150 s. As shown in Fig. 18,
the average response time of FDTO is around 35–150 ms, while
that of MAB is 100-190 ms. Moreover, when τ is set as 5 s,
FDTO can maintain the average response time at 35–90 ms.
When τ is increased to 15 s, the average response time of FDTO
increases to 35–150 ms. The simulation results indicate that the
FDTO algorithm can not only provide real-time decision for
highly dynamic and large-scale edge computing scenarios, but
also reduce the average response time by 50%–65% compared
with the MAB algorithm.

4) Summary of Evaluation Results: From the simulation re-
sults in Figs. 5–18 and Table IV, we can make the following
three conclusions. First, by Figs. 5–11 and Table IV, our FDTO
can control decision making time less than 50 ms by setting
the proper values of parameters. Second, by Figs. 12–16, our
algorithm can not only provide real-time offloading decisions,
but also achieve promising average response time compared
with the optimal. Third, by Figs. 17 and 18, our algorithm
with adjustable time slot duration can better deal with different
mobile scenarios and reduce the task average response time by
50%-65% compared with the existing solutions even in highly
dynamic scenarios.
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VI. CONCLUSION

In this paper, we have investigated distributed decision mak-
ing schemes for task offloading in VEC, which is a promising
paradigm for future transportation systems. We have considered
the unique challenges of vehicular networks, such as resource
constraints, high mobility and large scale, and proposed a fully
distributed task offloading (FDTO) scheme that allows vehicles
to make real-time offloading decisions only based on incom-
plete information from neighboring RSUs. We prove that our
proposed algorithms will converge to the global optimum by
iterations. Extensive simulation results have demonstrated that
the proposed solutions can achieve near-optimal task response
time with a short time for making offloading decisions.
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