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Abstract—Federated learning (FL) is an effective approach to train models collaboratively among distributed edge nodes (i.e., workers) while
facing three crucial challenges, edge heterogeneity, resource constraint, and Non-1ID data. Under the parameter server (PS) architecture,
a single parameter server may become the system bottleneck and cannot well deal with the edge heterogeneity, while the peer-to-peer
(P2P) architecture causes significant communication consumption to achieve satisfactory training performance. To this end, hierarchical
aggregation (HA) architecture is proposed to cluster workers to tackle the edge heterogeneity and reduce communication consumption for
FL. However, the existing researches on HA architecture cannot provide a unified clustering approach for various inter-cluster aggregation
patterns (e.g., centralized or decentralized structure, synchronous or asynchronous mode). In this paper, we explore the quantitative
relationship between the convergence bounds of different inter-cluster patterns and several factors, e.g., data distribution, frequency of
clusters participating in inter-cluster aggregation (for asynchronous modes), and inter-cluster topology (for decentralized structures). Based
on the convergence bounds, we design a unified clustering algorithm FedUC to organize workers for different patterns. Experimental results
on classical models and datasets show that FedUC can greatly accelerate the model training of different patterns by 1.79-7.39x compared

with the state-of-the-art clustering methods.

Index Terms—Federated learning, Edge computing, Clustering optimization, Heterogeneity, Resource constraint, Non-1ID.

1 INTRODUCTION

ITH the increasing popularity of Internet of Things
(IoT), a massive amount of data are generated from
physical worlds each day [1][2][3]. Traditionally, these data
are forwarded to the remote cloud for training or processing,
which will lead to potential privacy leakage and massive
bandwidth consumption due to long-distance transmission.
To this end, edge computing is proposed to push more com-
putation capacity to the network edge, enabling efficient data
processing locally. Besides, it motivates the application of fed-
erated learning (FL), which implements distributed machine
learning over edge nodes (also called workers) [4][5][6].
To implement highly efficient FL in edge computing, we
should take into account the following factors and challenges.

o Edge Heterogeneity: Various edge nodes with diverse
geographic locations, data volume, CPU capacities, and
network connections, will act as workers in practical
applications [7]. As a result, the time for performing local
updating and delivering models may vary greatly.
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e Resource Constraint: On the one hand, training models
are usually computation-intensive, while the computa-
tion resource on each worker is usually limited [8]. On
the other hand, the frequent model transmission between
workers consumes enormous communication bandwidth.
As a result, the edge network may be easily congested
due to limited communication resources [9][10].

e Non-IID Data: Since a worker collects data from its
physical location directly, its local data often cannot be
regarded as the samples drawn uniformly from the over-
all distribution. In other words, the data among workers
are usually non-independent-and-identically-distributed
(Non-IID) [11]. The previous works [12][13] have point-
ed out that the performance of FL will be significantly
degraded over Non-IID data.

There are three types of architectures, parameter server
(PS), peer-to-peer (P2P), and hierarchical aggregation (HA)
as dominant solutions for FL. Under the PS architecture
[11][14], a centralized parameter server aggregates the local
models from workers and then distributes the aggregated
global model back. On suffering from the enormous amount
of traffic workload, the parameter server will become the
system bottleneck, leading to the risk of single point failure
and poor scalability [15]. Under the P2P architecture [16-19],
workers transmit their models to each other through peer-
to-peer communication. Although the P2P architecture can
achieve better scalability compared with the PS architecture,
each worker needs to share its model with all the others to
achieve the same training performance as the PS architec-
ture, which causes significant communication consumption
[16]. To reduce communication consumption, some previous
P2P solutions transmit models through sparse communication
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links, e.g., by constructing subgraphs for the original topology
[18][19]. However, sparse topologies may generate the high-
variance problem among workers and the model may be hard
to converge, especially under Non-IID data among workers
[20].

To mitigate the disadvantages of both PS and P2P ar-
chitectures, the HA architecture [21-28] has been proposed,
where the workers are organized into multiple clusters. Each
cluster is deployed with an aggregator, which may be a base
station or a selected leader worker within the cluster. The HA
architecture contains two tiers of model aggregation. One is
intra-cluster aggregation, where each aggregator aggregates
the local models of the workers within its cluster into a
cluster model. The other is inter-cluster aggregation, where
the aggregators collaborate to derive new cluster models from
their current cluster models. After that, aggregators distribute
their new cluster models to the workers within the corre-
sponding clusters. Compared with the PS architecture, HA
disperses the communication consumption on the centralized
server over multiple aggregators, achieving better scalability.
Meanwhile, since the local models of workers within the same
cluster are consistent with the received cluster model, the
high-variance problem among workers will be relieved. Thus,
HA can effectively accelerate convergence by contrast with the
P2P architecture.

In this paper, we explore the quantitative relationship
between the convergence bounds of different inter-cluster
aggregation patterns (i.e., synchronous or asynchronous, cen-
tralized or decentralized) and several factors, e.g., data dis-
tribution among clusters, frequency of clusters participating
in asynchronous inter-cluster aggregation, and decentralized
inter-cluster topology. Moreover, for intra-cluster aggregation,
we propose an optimal time-sharing scheduling strategy to
address edge heterogeneity and communication resource con-
straint. Based on both the convergence analysis for inter-
cluster patterns and the optimal intra-cluster strategy, we
design a unified clustering algorithm FedUC to construct
clusters that can be adapted to different inter-cluster patterns
of HA. Our FedUC is orthogonal to HA architectures with dif-
ferent inter-cluster patterns, so their training performance can
be greatly improved by deploying our clustering algorithm.

The main contributions of this paper are as follows:

o We explore the quantitative relationship between the con-
vergence bounds of four different inter-cluster patterns
(i.e., CenSyn, CenAsy, DecSyn and DecAsy) and several
factors, e.g., data distribution among clusters, frequency
of clusters participating in inter-cluster aggregation (for
CenAsy and DecAsy), and inter-cluster topology (for
DecSyn and DecAsy).

o For intra-cluster aggregation, we propose an optimal
time-sharing scheduling algorithm as the aggregation s-
trategy, which can minimize the completion time of intra-
cluster aggregation.

« Based on both the convergence analysis for inter-cluster
patterns and the optimal intra-cluster strategy, we design
a unified clustering algorithm FedUC to solve the cluster
construction problem given the time constraints for intra-
cluster aggregation in HA.

o Experimental results on the classical models and datasets
show that, by deploying our clustering algorithm, the
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Fig. 1: Inter-cluster structures and communication modes.

TABLE 1: Inter-cluster structures and communication modes.

Mode
Structure Synchronous | Asynchronous
Centralized [21][22] [23][24][25]
Decentralized [26][27] [28]

model training of CenSyn (1.79x), CenAsy (5.88x), Dec-
Syn (7.39x) and DecAsy (5.32x) can be greatly accelerat-
ed.

2 RELATED WORKS

The inter-cluster aggregation of the existing HA researches is
generally considered in terms of two dimensions: structure
and communication mode. The inter-cluster structure can be
either centralized or decentralized. In a centralized structure,
a central parameter server aggregates the cluster models
from aggregators and distributes the global model back to
them, while in a decentralized structure, each aggregator
exchanges its cluster model with its neighboring aggregators
bidirectionally. The inter-cluster communication mode can be
either synchronous or asynchronous. In synchronous mode,
all aggregators perform one inter-cluster aggregation in each
round, while in asynchronous mode, each aggregator per-
forms inter-cluster aggregation immediately after completing
its local updating. Fig. 1 illustrates the inter-cluster structures
(centralized and decentralized) and communication modes
(synchronous and asynchronous). These two dimensions re-
sult in four inter-cluster patterns: centralized-synchronous
pattern (CenSyn) [21][22], centralized-asynchronous pat-
tern (CenAsy) [23][24][25], decentralized-synchronous pattern
(DecSyn) [26][27] and decentralized-asynchronous pattern
(DecAsy) [28], as summarized in Table 1.

In fact, even with the same clustering method, different
inter-cluster patterns will lead to diverse training perfor-
mance, whereas none of the existing clustering methods pay
attention to this importance. For example, the authors in [22-
28] cluster each worker to the aggregator with the shortest
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TABLE 2: Performance comparison for inter-cluster patterns.

Pattern
m CenSyn | CenAsy | DecSyn | DecAsy
(E(a)vrffl;?; I[lzlgzitzlsoln Medium Poor Poor Poor
Data-aware [21] Good Medium | Medium | Medium
FedUC Good Good Good Good

D 4 Different classes of data on workers

@ Proportion of classes on aggregators
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Fig. 2: Non-IID and IID data among clusters.

communication time (or distance). However, due to Non-
IID data among workers, a communication-aware clustering
method likely causes a high degree of data Non-IID among
clusters, as shown in Fig. 2(a). In this case, each cluster model
is trained from samples of a small subset of classes, so it
will be biased towards these classes [29]. As a result, it may
significantly slow down the convergence rate or even fail to
converge under CenAsy and DecSyn patterns.

The authors in [21] propose a data-aware clustering
method, where workers are clustered based on their data
distribution, such that the inter-cluster data distribution is
close to IID, as shown in Fig. 2(b). However, under the asyn-
chronous patterns (i.e., CenAsy and DecAsy), the frequency
of each aggregator participating in inter-cluster aggregation
may be diverse greatly, which makes the global model biased
towards the cluster models with high participation frequency
[30]. The clustering method [21] may cause a large number of
workers to be clustered to low-frequency aggregators, reduc-
ing training accuracy. Similarly, under the decentralized pat-
terns (i.e., DecSyn and DecAsy), since the clustering method
[21] does not consider the inter-cluster topology, a large num-
ber of workers may be clustered to aggregators with sparse
links, also reducing training accuracy [18]. The performance of
different clustering methods for different inter-cluster patterns
is summarized in Table 2.

The rest of this paper is organized as follows. Section
3 introduces the hierarchical aggregation federated learning.
Section 4 gives the convergence analysis of four inter-cluster
aggregation patterns. A unified clustering algorithm is pro-
posed in Section 5. The Experimental results are shown in
Section 6. We conclude this paper in Section 7.

TABLE 3: Key Notations.

Symbol Semantics
V The set of workers {vy,va,...,un}
S The set of aggregators {s1, s2, ..., Sps }
V; The set of workers whose aggregator is s;
S. The set of 'sj’s neighboring aggregators
J including itself (only for DecSyn and DecAsy)
d./D; /D The data size on worker v;/ cluster V;/

all workers

The proportion of the data size of worker v;/
@i/ B; cluster V; to the total data size
4 The proportion of the data size of worker v;

J to the data size of cluster V;

The loss function of worker v;/cluster V; /
fz/F]/F global ’ !
fi/F;/F* The optimal value of f;/F}/F
Wy The global model at round ¢
vi The local model of worker v; at round ¢
Vi The trained local model of worker v; at round ¢
w! The cluster model of aggregator s; at round ¢
~j The cluster model of aggregator s; derived by
Wi intra-cluster aggregation at round ¢
W, The cluster model that the parameter server

receiving at round ¢ (for CenAsy and DecAsy)

3 HIERARCHICAL AGGREGATION FEDERATED

LEARNING

In this section, we first introduce the concept of federated
learning (Section 3.1). Then we describe four procedures of
the hierarchical aggregation federated learning architecture
(Section 3.2). For ease of expression, some key notations are
listed in Table 3.

3.1 Federated Learning (FL)

We perform federated learning over a set of workers V =
{v1,v9,....,un}, with [V| = N > 1. Each worker v; trains a
model on its local dataset d;, with the size of d; £ |d;|. Then
the loss function of worker v; is defined as

filw) 2 2 3 fiwi), (1)
‘ged;
where w is the parameter vector, and f;(w;¢) is the loss over
a sample £ in dataset d;.

The global dataset over all workers is D, with size D =
D] = >°,,evdi- Let a; = d;/D denote the proportion of
worker v;’s data size to the total data size. The global loss
function on all the distribgted datasets is defined as

Fw)2 > Zfi(w) =Y aifi(w). @)
v €V D v, €V
The learning problem is to find the optimal parameter vector
w* s0 as to minimize F(w), i.e., w* = argmin,, F(w).

3.2 Hierarchical Aggregation (HA) Federated Learning

We introduce the worker side, the aggregator side and the
parameter server side of the HA architecture respectively as
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described in Alg. 1. The HA architecture consists of four pro-
cedures: worker clustering, local training, intra-cluster aggregation
and inter-cluster aggregation.

3.2.1

In addition to a set of workers, the HA architecture includes
a set of aggregators S = {s1, S2, ..., spr}, with M = |S|. Each
worker sends its local model to a selected aggregator. If s;
is the aggregator of worker v;, x; ; = 1; otherwise, z; ; =
0. As a result, workers in V are organized into M clusters
V1, ..., V, satisfying U oV =Vand V;Vy = @,Vj # j'.
Let D; denote the dateset of cluster V;, w1th size D; = |D;| =
Zvievj di = >, ey Ti jd;. The loss function on cluster V; is
defined as i

Fiw) & > 5o filw)= 3 6ifiw), O

viey; J v; €V

where ¢ denotes the proportion of the data size of worker v;
in cluster V;. It is obviously that

D
F(w)= ) FFiw) =3 BiFw), (4)
5;ES ;€S
where 3; denotes the proportion of the data size of cluster V;
to the total data size is §; = D;/D.

Worker Clustering

3.2.2 Local Training

Worker v; performs local updating at round ¢ by
—nVfilvii &), 4(5)
where 1) is the learning rate, V is the gradient operator, &;_;
is a sample uniformly chosen from the local data and vi_; is
the local model of worker v; at round ¢t — 1. Let 7" denote the
number of local updating iterations before each intra-cluster
aggregation. If ¢ is an integer multiple of 7", v is uploaded to
its aggregator (Line 5). Otherwise, the local model v} is set as
Vi (Line 9), and then v; performs local updating for the next
round ¢ + 1.

~i_ i
Vi=Vi

3.2.3

Aggregator s; receives the updated local model v} from each
worker v; in cluster V;, and aggregates them as

wi=> - Ligi= ¥ s ©)
v; €V v; €V
Assume that there are T’ 1ntra—c1uster aggregations on each
aggregator before inter-cluster aggregation. If the intra-cluster
aggregation index h = t/T" is an integer multiple of T”,
aggregator s; performs inter-cluster aggregation to obtain its
new cluster models w{ as described in Section 3.2.4. Other-
wise, its cluster model w is set as W; (Line 28).
Subsequently, aggregator s; distributes its cluster model
w; back to the workers in cluster V; (Line 29). On the worker
side, each worker v; sets its local model as the received cluster
model from its aggregator, i.e., vi = wy,v; € V; (Line 7).

Intra-cluster Aggregation

3.24

Aggregators perform inter-cluster aggregation to derive their
new cluster models. We introduce four inter-cluster aggrega-
tion patterns accordingly.

Centralized-synchronous (CenSyn): This pattern per-
forms synchronous inter-cluster aggregation in the centralized
structure. There is a centralized parameter server in the HA

Inter-cluster Aggregation

Algorithm 1 Hierarchical Aggregation Federated Learning

1: Processing at Each Worker v;
2: fort =1to T do 4
3:  Obtain local model v; by Eq. (5)

4 ift mod T” == 0 then

5 Upload v to its aggregator s;
6 Receive w from s;

7: vi=w]

8 else

9 vi=v!

10: Processing at Each Aggregators s;

11: forh=1to T/T" do

12:  Receive ¥V} from each worker v; € V;
13:  Obtain cluster model w; by Eq. (6)
14:  if hmod T’ == 0 then

15: if Inter-cluster pattern is CenSyn or CenAsy then
16: Send W to the parameter server

17: Receive w; from the parameter server

18: W{ = Wy

19: if Inter-cluster pattern is DecSyn then

20: Send W7 to each aggregator s,/ € S;

21: Receive V"th from each aggregator s; € S;

22: Update model w; by Eq. (10)

23: if Inter-cluster pattern is DecAsy then

24: Obtain W "of each aggregator s;; € S; from caches
25: Update model wy by Eq. (11)

26: Send w7 to each aggregator s;: € S;

27:  else

28: Wi = wi

29:  Distribute w] to each worker v; € V;

30: Processing at Parameter Server

31: if Inter-cluster pattern is CenSyn then

32:  Receive W] from each aggregator s; € S
33:  Update global model w; by Eq. (7)

34:  Distribute w, to each aggregator s; € S
35: if Inter-cluster pattern is CenAsy then

36:  Receive Wi from any s;

37:  Update global model w, by Eq. (8)

38:  Distribute w; to s;

architecture. Each aggregator s; uploads its aggregated cluster
model W/ to the parameter server at each inter-cluster aggre-
gation. The parameter server performs global aggregation' as

wWe= ) —Jv*vg =D Bi%l, @)
s;€ES 5;€S

and then distributes the global model w; to all aggregators
(Line 34). After receiving the global model, each aggregator s;

updates its cluster model, i.e., w] = w; (Line 18).
Centralized-asynchronous (CenAsy): This pattern per-
forms asynchronous inter-cluster aggregation in the central-
ized structure. On receiving the aggregated cluster model
from any aggregator, the parameter server performs global
aggregation and returns the updated global model. Let s;.
denote the aggregator participating in the " global aggre-

1. The term “global aggregation” is equal to “inter-cluster aggregation”
for the patterns with centralized inter-cluster structures, e.g., CenSyn and
CenAsy.
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gation. Obviously, when aggregators perform inter-cluster
aggregation, the index of inter-cluster agregations satisfies
r =t/(T" - T"). Specifically, on receiving a cluster model W
from s;, at round ¢t = rT'T”, the parameter server performs
global model aggregation as

=(1 =0, )wW¢_prpr + 0%,

:(1 - QT‘)W(T—l)T/T” + QTWT’T/T”/ (8)
where 0, is the weight of the received model at the rth global
aggregation. The global model w, is distributed to aggregator

, (Line 38) and set as s;,’s cluster model subsequently, i.e.,

g’ = w; (Line 18).

Note that since the aggregators participate in global model
aggregation asynchronously, the received cluster model Ww; on
the parameter server is not necessarily equal to W™ [31]. Let
7, be the interval (called the staleness [32]) between the current
inter-cluster aggregation r, and the last received global model
version by aggregator s;, . The received cluster model actually
satisfies .

Wi = Wyprpn = W'Z;—TT)T'T”' )

Decentralized-synchronous (DecSyn): This pattern per-
forms synchronous inter-cluster aggregation in the decentral-
ized structure. There is no system-wide centralized parame-
ter server in the decentralized inter-cluster structure. As an
alternative, each aggregator s; exchanges its cluster model
w7 with its one-hop neighboring aggregators at each inter-
cluster aggregation. Let S; denote the set of s5;’s neighboring
aggregators including itself, and o = Dj/ Zsj,e s, Djr de-
note the proportion of the data size of cluster s;: to the total
data size of clusters in S;. After receiving other aggregators’
cluster models W7 ,,Vsj/ € §;, aggregator s; performs model
aggregation by

Wj _ Zsj/esj DJ'Wg . 7
! = =
Zsj/esj Dj: 5;1€S; 7

Decentralized-asynchronous (DecAsy): This pattern per-
forms asynchronous inter-cluster aggregation in the decen-
tralized structure. Unlike the DecSyn pattern where each
aggregator needs to wait for cluster models from its neigh-
bour aggregators, under the DecAsy pattern, each aggregator
maintains caches for the received cluster models from its
neighbouring aggregators. If a new model is received from
a neighbour aggregator, the corresponding original model is
overwritten. At the rt" inter—cluster aggregation, aggregator
s;, aggregates the cluster model W7, Vs; € S, in its caches by

> ol W, (11)
5;€S;,
and sends wl" to its neighbour aggregators (Line 26). Similar
to the case under CenAsy, let 7/ be the staleness between
the current inter-cluster aggregation r and the version of
the cluster model W7 in s;,’s cache. Thus the cluster model
actually satisfies

=7’
Wi .

(10)

R — &7
Wi = W’I‘T'T” - w(’l"*TTJ:)T'T”. (12)

4 CONVERGENCE ANALYSIS

In this section, we first give several general assumptions in
federated learning (Section 4.1). Then we obtain the conver-
gence bounds of the CenSyn, CenAsy, DecSyn and DecAsy
patterns through theoretical analysis (Section 4.2).

4.1

We make the following assumptions on the loss functions
fi(w),Yv; € Vin Eq. (1) for convergence analysis, which are
widely used in the existing literatures [8][33].

Assumptions

Assumption 1 (Smoothness): f;(w; &) is L-smooth for every
realization of §& with L > 0, ie, Ywi,wq, [|[Vf(wy;§) —
Vf(wa; )| < Ll||lwy — wa||. Then, by the property of L-smooth
function, we have, VWl,Wg, fz (Wg) — fi (Wl) S <sz (Wl), Wo —
wi) + Hllwz — wi .

Assumption 2 (Strong convexity): f;(w) is u-strongly convex
with > 0, ie., Vw12, wa, fi(wa) — fi(w1) > (Vfi(w1),ws —
wi) + 5lwe —w "

Note that models with convex loss functions, such as linear
regression and support vector machines, satisfy Assumption
2. The evaluation results in Section 6 show that our mechanis-
m can also work well for models (e.g., CNN) with non-convex
loss functions.

4.2 Analysis of Convergence Bounds
4.2.1 Convergence Analysis of Intra-cluster Aggregation

For ease of expression, we abbreviated F(w*) as F*, which
represents the optimal value of the global loss function F'.
Similarly, F* denotes the optimal value of the loss function
F}j on cluster V;, and f;* denotes the optimal value of the loss
function f; on worker v;.

For the HA architecture, inter-cluster aggregation usually
causes more communication consumption than intra-cluster
aggregation [23]. So we can reduce the communication con-
sumption by increasing the frequency of intra-cluster aggre-
gation (decreasing 7"') while decreasing that of inter-cluster
aggregation (increasing 7”) [34]. To this end, we reasonably set
T" =1 for the rest of this paper [21]. We give the convergence
analysis for performing 7" intra-cluster aggregations in cluster
V; by the following lemma.

Lemma 1 :Taking n < g4z, for Vs; € St = rT',r €
{0,1, ..., R}, it holds that

E[F (W] )] — F* <Po (E[F(W(T yr)l = F7) +6;,
where pg =1 — un, §; = po Ujand T; = 3&; + 2L°n°F} —
200 Y, ev, 9517 +L77 Evzev ¢%9;

Proof: According to Egs. (5) and (6), for Vs; € S, it holds

that
Wt = Z ¢l
v EV;
= Z ¢;‘(V;71 —ani(VLl;éLl))
'Uier
=Wi_1—1 Z ¢§Vfi(wi—1§f§71)~ (13)

Vi EVJ
According to Assumption 1, it is obvious that F' is L-smooth.
It follows
F(wi) -

F* < F(w]_y) + (VF(w]_y), %] —wi_,)

F*—7]<VF Wt 1 Z ¢ vfz Wt 17£t 1)>

v €Vj
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Lp? i J i 2
+7” Z (ijfl'(wtfl;gt—l)” . (14)
v €Vj
We derive the expectation of the third term of Eq. (14) as
E[(VF(w{_,) Z ¢1sz Wt 17§t )]
v €V;
=(VF( Wt 1) Z (bEvfz Wt 17§t )
v €V;

=(VF(w]_,), VF;(w]_,))
1 .

=5 (IVFO )P+ 1B I
~IVF(w ) = VE I, (15)

According to Assumption 2, it is obvious that F' is pi-strongly
convex. It follows 4

IVE(w_)I* > 2u(F(w;_y) = F7). (16)
By using the AM-GM Inequality and the Jensen’s Inequality,
we derive the expectation of the last term of Eq. (14) as

Elll Y &5VSiwi_p;&0)’)

’UiEVj
=E[| Y ¢iVfiwi_ &) — D iVLi(viiE )
UVLEVJ' ’UiEVj
+ ) SV AEEE DI
v; €V;
<2E[| > UV Iiwl_ &) = VEVEE )]
’UiEVj
+2E[| > ¢V A& DI
v, €V
<2 3" GE[|Vfi(w_:€_y) — VH(VEE D]
v €V;
+2 > GEIVAVEE DI, 17)
v; €V

where v is the optimal solution of f;. According to Lemma 3
of [35], we have

E[IIVfi(Wf_l;ii_l) -

<OL(fi(wi_)) — f). | (18)

Let g7 = E[|Vfi(vi;&)I°] = ElIVA(VHEIP] = ... =

E[||V fi(v}; €R)||?], since {£}}i>¢ are IID random variables for
each worker v; [35]. Then we have

Elll Y &5VSilwi_y; &)’

v €Vj

V&)

< Z ¢§[4L(fi(W{—1) — 1) +29;]
viEV;
=ALFj(w]_y) —AL Y ¢ifr +2 > ¢lgr.  (19)
v €Vj v €Vj
Since F} is also p-strongly convex for Vs; € S, we have
, 1 , .
Fi(wi_1) < o IVE(wiy)II* + . (20)
Therefore, Eq. (19) can be transformed as
E[l > 5V Iiwi_: & )]
v, €Vj
2L J 2 * ipx ik
SNFy (Wi )IP +ALF —AL Y ¢5ff +2 ) ¢50;
,LL UiEVj 'Uievj'
(21)

We define &; £ max¢p) |VF(w]) — VFj(w])|| as the max-

imum of the gradient divergence [8][36] of cluster S; for
Vt € [T]. By taking Egs. (15), (16) and (21) into Eq. (14), we
derive that

E[F(W])] — F* < (1 — um)(E[F(w]_,)] — F*)
n L2n2 ; n
(5= CINVE LI + 5
2L FF =207 Y @i fT A+ Ln? Y dlgr. ()
v; €V v €EV;
Since n < LQ,we have
E[F(W7)] = F* < po(E[F(W;_y)] = F*) +T;,  (23)
where py = 1 — pn and T; = 3& + 20%0°F; —

2L%n° 2 viev, 915 I+ Ln? D v, gf)’gl For Vs; € S, when
t=rT"re {0, 1,..., R}, it holds that

E[F(Wip)] — F* <po(BIF(wlp_ )]~ F*) +T,
| =po(ELF ()] = F) 4T, (24
where w’,_; = W, _, because the index rT” — 1 of the
current round is not an integer multiple of 7”. By using the
recursive relation Eq. (24) from round 77" to round (r — 1)77,
we obtain that
E[F(W!y)] — F*

<po(E[F(W}p )] = F*) + T

<P (BIF (W)gi_)] = F7) + [po + 1T

T'—1 = j 1 P(?Ll
<po — (BIF (W )] = F7) + 1 ~ Ly

T 7 * 1- pO
<o (BLF,(wi, )]~ F) + =20,

Po
, 1

=03 (ELE; (W) = ) + 1_‘;3 ;. (25)

where WZTA)T/ = w(,_1)7 because the cluster models are
synchronized to the global model when the index of the

current round is an integer multiple of 7”. Let §; = 11 f ; ry,
we complete the proof.

Based on Lemma 1, we analyze the convergence bounds of
the following four inter-cluster aggregation patterns: CenSyn,
CenAsy, DecSyn and DecAsy, respectively.

4.2.2 Convergence Bound of CenSyn

Theorem 1 : WO is the initial global model. After inter-cluster

aggregation Eq. (7) is performed R = T /T’ times, the trained global
model wr satisfies

E[F(wr)] - F* < p"(F(wo) — F*) +4,
where p = 1 — pn, 6 = 2 = gzs_,-esﬁjfj +

200 3, es BiF; —2L°0° 3, e i f + L* 3,y g

Proof: Since F' is convex and f3; €
Lemma 1, we can deduce that
E[F(WT)] — F* = E[F(WRTI)] — F*

SZ Gsﬁj(E[F(VV%T/)]_F*))
<pt Zﬁg _F*)+Zﬁj6j

s;€S s;€S

1-—
PoF
1—po

(0, 1], according to

RlT’

—ot (BIF(Wig_1yr)] — F*) + (26)



MA et al.: FEDUC: A UNIFIED CLUSTERING APPROACH FOR HIERARCHICAL FEDERATED LEARNING 7

where I' = 1 Zsjeg Bi& + 2L%n? Zs es BiF} —
20202 Y, ey i ff +Ln* Y, ¢y cig;. Thus we can obtain the
difference between F(wr) and F* by the global updating of
R times in Eq. (7) as follows

E[F(wr)] — F*
< T’ * 1- p(’{/
<py (BIF(Wr-1yr)] = F") + . r
27" vl P(l/
<py (E[F(Wr_oyr)] = F*)+(py +1) 1= r
, 1— pRT' 1— pT’

<pt" (F(wo) — F*) + — 2~ —10T

<py (F(wo) ) 1—pI" 1 po

=p" (F(wo) = F*) +9, 27)

T

wherep:pozl—;mand(l:11_ppf. O

4.2.3 Convergence Bound of CenAsy

Before convergence analysis, we first state a key lemma for
our statement. For ease of expression, we denote w,, = r —
7, — 1 > 0 as the version of the received global model on s,
before the rth global aggregation. 7, = max,{7,} denotes
the maximum staleness.

Lemma 2 [37]: Let Q(r) be a sequence of real numbers for r > 0.

x, y and z are three nonnegative constants, satisfying x +y < 1. If

Q(r) <zQ(r — 1) + yQ(w,) + 2, then
Q(r) < p"Q(0) +4

where p = (z + y) Trmar and § = eyl

(28)

We prove this lemma by mathematical induction. The
details are provided in Appendix A.

Next, we derive the specific values of z, ¥y and z in
the CenAsy pattern and obtain the convergence bound of
CenAsy by applying Lemma 2. For asynchronous inter-cluster
aggregation, we denote 1); as the relative frequency of ag-
gregator s; participating in the global aggregation, satisfying
>s,es ¥j = 1. In addition, we reasonably set 6, = f3;, = Df)""
in Eq. (8) similar to the existing works [30][38], since the larger
the volume of data in cluster V; , the greater its impact on the
global model.

Theorem 2 : wo is the initial global model. After inter-cluster

aggregation Eq. (8) is performed R = T /T times, the trained global
model wr satisfies
E[F(wr)] — F* < pT(F( 0) — F*)+9,
Zq €S w]ﬁﬂ J

where p = (1~ (1—p") X, s il e, 6 = 240
and pg =1 — un.
Proof: Combining Eq. (9) and Lemma 1, for V¢t =

T',r € {0,1, ..., R}, it holds that
E[F (W) — F* =E[F(W,r/)] — F*
:ElF(‘X’fLTT)T')l - F*

<py (BIF(Wr, )] = F") + 85,

<pg (ELF(Wo,r)] = F*) +85,,  (29)
By the global aggregation Eq. (8) at the parameter server, we
can deduce that

F(WTT/) — F*
=F((1 =B )W—1yr + B, Wyppr) — F*

S(l - ﬂjr)F(W(rfl)T’) + Ber(er’) - F*

:(1 — Bjr)(F(W(r—l)T’) — F*) + Bjr(F(er’) — F*) (30)
Combining Eqgs. (29) and (30), the expectation of the difference
between F (er/) and F™* can be calculated as

E[F(W’I‘T/)] - 1 - Z wjﬁj W(r 1 T’)l - F*)
;€S
+ 3 0808 (BIF (W, 1)) — ”0 D ORCLAY
s;€S s;€ES
(31)
Let Q(r) = E[F(w,r/)] — F"*. Then E[F(W_1)p)] — F* =

Q(r — 1) and E[F(w,, 1) — F* = Q(w,). The recursive
relation in Eq.(31) is transformed into

r) <= ¢;8)Q(r—1)

s; €S

x

+ > UiBins Qlwr) BTy (32
s; €S s;€S
y / z
According to Lemma 2, if (1 — p{") > s,es ¥iBj € (0,1), then
E[F(wr)] — F* < pT(F(wq) — F*) + 0, (33)

7 1
where p = [1 — (1 — pf )X, es %] Frmar and § =
> es ¥ibily 0
BN es ¥ibi”

4.2.4 Convergence Bound of DecSyn

Since no global model is maintained in the DecSyn pattern, we
analyze the weighted model wr =3, < f; wi. of all cluster
models. For ease of expression, we define several matrices.
B = [f1,...00m] is the vector representing the proportion of
the clusters’ data sizes. Recall that o 7= = Dy/>, es; Dir
denote the proportion of the data size of cluster sjr to 'the total
data size of clusters in .S;. Then we define

a1 ot
s=1: ; (34)
o oM

as the data size weight matrix of the neighboring clusters.

Before analyzing the convergence of DecSyn, we first state
a lemma to describe the quantitative relations that two matri-
ces B and S satisfy.

Lemma 3 : BS"1); = 1 for Vr > 0, where 1y = [1,...,1]7
denotes a vector with M dimensions all 1’s.

We prove Lemma 3 by mathematical induction. The details
are provided in Appendix B. Then we analyse the convergence
bound of DecSyn pattern as follows.

Theorem 3 : wy is the initial model on each worker. After inter-
cluster aggregation Eq. (10) is performed R = T /T’ times, the
weighted model W satisfies

E[F(wr)] — F* < p7 (F(wo) — F*) +6,
where p = 1 — pun, 6 = Zf’z_ol p"U'BS™ A and A =
e [0y, Ty, T

Proof: According to Lemma 1, for Vs; € S,t =rT",r €
{0,1,..., R}, it holds that _
E[F(W;)] = F(w") = E[F(W;7)] — F(w”")
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<p" (B[F (W), _yyp)] = F(W") +3, (35)
where p = py =

1 — pn. Combining Egs. (10) and (35), we
deduce that

B{F(w]y)] - F(w")
< Y o (BIF(W)] - F(w")
5.1 ES
SpT/ Z O-;/(E[F(W{;—l)T')}_FW ) + Z ol o
Sj/GS]‘ Sj/GS_.]‘
(36)
Let Q;(r) = _E[F(w/p)] — F* and Q(r) =
[Q1(r),...,Qum(r)]". The recursive relation for Vs; € S

is transformed into

Q(r) < p"'SQ(r — 1)+ 8A, (37)
where A = 1;_”; [[1,T,..Ta] . By iterating Eq. (37) for R
times, we have

Q(R) <p”'SQ(R

—1)+SA

<p*'S?’Q(R - 2) + [pT'S + E]SA
R-1
RT SRQ + Z prT ST+1A (38)
r=0
For Vs; € S, it follows Q;(0) = F(w}) — F* = F(wq) — F*,

so Q(0) = 1 (F(wo) —
of clusters satisfies

F*). Therefore, the weighted model

E[F(wr)] — F*
< Bi(B[F(Why )] — F*)
SjES
=Y BQ4(R
SjES
=BQ(R)
R—1 ,
<p"BS 1y (F(wo) — F*)+ Y p"BS™™A. (39
r=0
By Lemma 3, BSf1,; = 1. So, we have
R—1
E[F(Wr)] — F* <p" (F(wo) — F*)+ Y p""'BS™HA.
r=0
(40)

Setting § = -7 ! p'T'BS"t1 A, we complete the proof. [

4.2.5 Convergence Bound of DecAsy

For ease of expression, we construct three sequences of matri-
ces X(r), Y;(r) and Z(r) for r > 1, where X(r) and Y, (r)
are M x M dlagonal matrices, and Z(r) is a M-dimensional
vector. Specifically, the ji" diagonal element of X(r) is z,
and others are 1; the jih diagonal element of Y (r) is ¢/}, and
others are 0; the j* element of Z(7) is z,, and others are 0.

That is,
1 0 - --- 0
X(r)y=10 Ty 0f,
0 0 1

0 0 0
Y;(r)=10 Yj 0f,
0 0 -+ --- 0
and Z(r) = [0,0, ...z, ...0] T Note that ., y§ and z, are are on

the same row in X(r), Y;;(r) and Z(r), respectively, satisfying
0, = x, + ZS €s;, yJ < 1. Similar to the case under CenAsy,

we first state a key lemma for our statement. Let w) = r —
5 —1>0, Tmaz = maxT_J{TJ} and 0,4, = max,.{0, }

Lemma 4 : Let Q(r) be a sequence of matrices for r > 0. If Q(r) <
XrQr—=1)+3cs, Y, (r)Q(wl) + Z(r), then
r) < H P(i)Q(0) + Z Ai),

where P(r) is a M x M diagonal matnx and its ji* diagonal
1
element is 0,4, *F7ma= , and others are 1. That is,

(41)

1 0 )
P(r)= |0 Ormae Frmar 0],
0 0 |
A(r) is a M-dimensional vector
[0,0,...,0]T,r =0
— r—1
AN X+ S Y0 -B)S AG) +20),r 21
SJ'EST =0

We prove this lemma by mathematical induction. The
details are provided in Appendix C.

Theorem 4 : w is the initial model on each worker. After inter-
cluster aggregation Eq. (11) is performed R = T /T’ times, the
weighted model W satisfies

E[F(wr)] ~ F* < K(F(wo) = F*) +4,
¥;
where K Zéjesﬂjplﬂm‘“”, § = LoBSA, L =
b el A B = [fufu A =
1— p}’q)* ) 1_pT/ [RRR) 1_pUT/ ’ 1s--PM]s
117’)00 01,9, ..Ta]" and po = 1 — un. © is the Hadamard

product symbol.
Proof: According to Lemma 1 and Eq. (12), for Vs; €

Sj.t =rT",r € {0,1,..., R}, it holds that
E[F(W)] - F* =E[F(¥) )]~ F"
<pg E[F(w) _, o)) = F) +6j. (42)
Combining Egs. (11) and (42), we derive that
E[F(w{")] — F* = E[F(w)p,)] - F*
55 ESJr
<P0 Z (r T — nr ')]_F*)+ Z 0]6
Sj ESJr Sjesjr
(43)
Let Q;(r) = F(w’p) — F* and Q(r) = [Q1(7), ..., Qu ()] .
The recursive relation for Vs; € S is transformed into
Q(r) <X(MQ(r—1)+ > Y(r N+ Z(r), (44)

5;€S,
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where
1 0 0
X(r)y=1{0 p%ﬂlaj-‘: 0],
0 0 1
0 0 0
Y;(r)=10 pOT'cf;T 01,
0 0 cee e 0.
and Z(r) = [0,0,... 37, cs, aj:r&j, ...,0] . According to Lem-
ma 4,

(45)

) < H P(r)Q(0) + Z A(r
where P(r) is a M >< M diagonal matrlx Spec1f1cally, the
jih diagonal element of P(r) is (pd 3, €8, O 7)1+7maz =

T/
po ™=, and others are 1. That is,
1 0 .. o0

0 0 . o1
A(r) satisfies the following recursive relation:
[0,0,..,0]",r =0

0 0 - - 0 0

From Eq. (46), we can derive that
1—pt T j
1_;)](’1]"’ 25‘7‘651 015J
R 1-p52" Js
Tt Zsjesg 03295
r)= [517 7ﬂM]

1— pd MT

1-p¥

./
J S,
Z a5 0jr

S /ESJ'

J s,
ZSJGSM JM(S]
Tw iT

_Z/Bj T/

5;€S 0
=L ©BSA,

-
where A = = p{g’

DecSyn, we have

E[F(wr)] — F* < Y B;(E[F(

s;ES

(47)

. Similar to the case under

[[1,Ty,..Ta] "

W??T’)] - I")

=Y BiQi(R)

s;ES
ZBQ( )
R
<BHP )1 (F )—F*)+BZA(T)
r=0
= 8,007 (F(wo) — F*) + L© BSA. (48)
s; €S
L,U T
Setting k=) cs BJPHW” and § = LOBSA, we complete
the proof. 0

5 UNIFIED CLUSTERING ALGORITHM

In this section, we first give the unified form of the conver-
gence bounds for different inter-cluster aggregation patterns
(Section 5.1), and then propose a time-sharing strategy for
intra-cluster aggregation (Section 5.2). Based on both the
discussions of convergence bounds and the proposed intra-
cluster aggregation strategy, we describe the problem formu-
lation (Section 5.3) and propose a unified clustering algorithm
for accelerating HA (Section 5.4).

5.1 Unified Form of the Convergence Bounds

Recall that z; ; is the indicator for whether worker v; belongs
to cluster V; or not. If s; is the aggregator of worker v;,
x;; = 1; otherwise, z; ; = 0. The clustering strategy in the
whole edge network is denoted as © = {2 j}v,cv,s,es- Let
F(x,wq,T) denote the convergence bound after 7' rounds
of training from the initial model w under the clustering
strategy x. Therefore, according to Theorems 1, 2, 3 and 4, the
convergence bound of four inter-cluster aggregation patterns
can be uniformly expressed as

F(z,wo,T) £ k(x)(F(wo) — F*) + 6(x). (49)
where k(x) is called the convergence factor and represents the
convergence rate of the loss function, and J(x) is called the
residual error, represents that the loss function can converge
to a §-neighborhood of the optimal value.

Specifically, the specific expressions of k(x) and d&(x)
under CenSyn, CenAsy, DecSyn and DecAsy patterns can be
obtained by Theorems 1, 2, 3 and 4 respectively, which are
concluded in Table 4.

TABLE 4: k(z) and 0(x) under different patterns.

Pattern K(x)
CenSyn (1= pm)”
, T
CenAsy {1 —[1—(1—pn)" ¥, cs¥;B(x)}TFma
DecSyn (1= pm)”
v;T
DecAsy 2sses Bi(@) (A — pm) TFrmar o
Pattern o()
CenS 1= B;(x)T ()
ensyn 1 s;€8 PINE)L AT
Zsjes ¥ibi(@)T(®)
CenAsy m; 2 es ViBi(®@)
DecSyn SE A - )T B(2)[S(2)] T A(z)
DecAsy L © B(z)S(z)A(x)
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Without causing confusion, we denote I'; (z), A(x), 5;(x),
B(x) and S(x) as the values or matrices of I';, A, 3;, B and
S under the clustering strategy x, respectively.

Obviously, the convergence bound F(x, wo,T') is subject
to the convergence factor k(x) and the residual error 6(x),
whose values may depend on the clustering strategy . Then
we can draw some meaningful corollaries as follows.

5.1.1 The Impact of p(x)

For the CenSyn and DecSyn patterns, the convergence
factor x(x) is independent of the clustering strategy «,
ie, k(x) = (1 — pun)T. However, k(x) is related to =
for CenAsy and DecAs;Tz patterns, ie, {1 — [1 — (1 —
w1, s i (@)} e and m(x) = 30, e Bi(a)(1 —

1/1]- T
un) ™ maez for CenAsy and DecAsy, respectively. We can draw
the following corollary.

Corollary 1 : For the CenAsy and DecAsy patterns, if the partic-
ipation frequency of aggregators s1 and sy satisfies 11 < 1o, the
convergence factor k(x) can be reduced by clustering some workers
from s to ss.

We prove Corollary 1 by comparing the value of x(x)
before and after clustering some workers from s; to s3. The
details are provided in Appendix D. Corollary 1 shows that
workers can be clustered to high-frequency aggregators as
much as possible to accelerate convergence for the CenAsy
and DecAsy patterns. For example, without considering com-
munication resource constraints, clustering all workers to
the aggregator with the highest participation frequency will
achieve the fastest convergence rate (minimum «). However, if
workers are clustered to aggregators farther away from them,
it may decelerate FL training instead due to long communica-
tion time, which will be further discussed in Section 5.3.

5.1.2 The Impact of §(x)

Recall that T'; = 2&; + 2L*0°F; — 2L%n? Do, oLf +
Li? S, ey, Shg7 and & £ max,eqr [VF(wl) — VFy(wh)]|.
For four different patterns, the residual error d(x) partly
depends on the data distribution among clusters (I';(x) and
Bj(x), ¥s; € S). We can intuitively draw the following
corollary.

Corollary 2 :The greater the degree of data Non-IID among
clusters, the larger the value of &;(x) for each cluster s;j, and the
higher residual error 6(x). Given IID data among clusters, then
VF(w]) = VF;(w]) and £;(x) = 0 for Vs; € S, the residual
error 0(x) can be reduced.

Corollary 2 shows that workers can be clustered to make
the inter-cluster data distribution close to IID, so as to reduce
the residual error §(x) and improve training performance.

In addition, for DecSyn and DecAsy patterns, it is obvious
that the residual error §(x) is also related to S(z), which de-
pends on the clusters” data sizes and the inter-cluster topology.
However, it is difficult to intuitively figure out the influence
of inter-cluster topology on training performance from the
expression, which will be explored through experiment in
Section 6.

Remark 1 : The residual error 6(x) is also related to the learning
rate n, and it approaches 0 as 7 decreases. This means that a

diminishing learning rate can eliminate the residual error and
achieve the optimal solution. However, a diminishing learning rate
may also slow down the convergence rate, and it is difficult to choose
an appropriate learning rate for each round a-priori. In this paper, we
focus on the effect of clustering strategies in hierarchical federated
learning on the convergence performance, and we assume a fixed
learning rate for simplicity and clarity. In our future work, we will
explore how to improve the convergence efficiency by selecting a
suitable diminishing learning rate.

5.2 Deploy Time-sharing Strategy for Intra-cluster Aggre-
gation

For FL aggregations, workers usually follow a time-sharing
(TS) [39][40][41] or frequency-sharing (FS) [42][43] strategy.
However, with frequency-sharing strategies, the frequency
allocated for the workers is static, resulting in a waste of
bandwidth resources [41]. Therefore, we deploy the time-
sharing strategy for the uplink communication of intra-cluster
aggregation, i.e., only one worker is uploading its model in
any time period. Similar to the existing works, this paper does
not consider the model distributing time caused by downlink
communication, which is negligible compared to the model
uploading time. The reason is that the downlink bandwidth is
much larger than uplink bandwidth, and the aggregators can
distribute models to workers by broadcasting.

Due to edge heterogeneity, workers in a cluster may have
diverse computation capabilities and communication quality
with the aggregator, which results in different model training
and transmission time. Let L§ denote the model training time
on worker v;. L;’ ; denote the model uploading time between
worker v; and aggregator s;. Suppose that the full knowledge
of L§ and L} ;,Vv; € V; can be obtained according to aggre-
gator s;’s previous measurements [30]. Since workers” model
training can be performed in parallel, different scheduling
strategies for model uploading in uplink communication will
result in different completion times of intra-cluster aggrega-
tion.

Without confusion, given R workers vy, va, ..., Vg in cluster
V;. Let v, v4,, ..., v;, denote the uploading sequence of the
scheduling strategy, where sequence i1,12,...,ir is a rear-
rangement of sequence 1,2, ..., R. Let L} denote the comple-
tion time of each worker v;.’s model uploading. It is obvious
that the start time of v;, s uploading is equal to the larger of
L} and L . Therefore, we derive the recursive formula as

» 0, z=0
B Z \maxizz_1ey+1t, 1<a<x. 0
We can derive the following lemma from Eq. (50).

From the following Theorem, we can obtain the optimal
time-sharing strategy, which minimizes the completion time
of the intra-cluster aggregation.

Theorem 5 : The completion time of the scheduling strategy will
be minimized by ordering the uploading sequence as v;, , Vi, , ... Vip,
such that L{ < Lf < ..<Lf..

The above problem is essentially a single machine schedul-
ing problem 1|r;|Cy,qz, which is described in [44], and it is
proven the optimal strategy is to schedule in order of the
release times (i.e., training times in this paper). Then the
optimal completion time of the intra-cluster aggregation for
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Fig. 3: lllustration of the intra-cluster time-sharing strategy.

cluster V; is equal to the completion time of worker v;,’s
model uploading, i.e.,
L' =1LF . (51)
To better illustrate the impact of time-sharing scheduling
strategy on the completion time of intra-cluster aggregation,
we give an example with four workers vi-v4 clustered by
aggregator s; in Fig. 3. As shown, the local training times
of workers satisfy L§ < L§ < LY < L§, therefore the
uploading sequence vs,v4,v1,v3 minimizes the completion
time of the intra-cluster aggregation. For example, since the
first worker to upload its local model is vy, the completion
time of its model uploading is L, = L§ + LY ;. Besides, since
the completion time of the v4’s uploading is larger than that
of local training on v;, the completion time of v;’s model
uploading is L§ = max{L}, L{} + L}, = L} + L{,. The
optimal completion time of the intra-cluster aggregation for
S1 is Lg

5.3 Problem Formulation

Based on both the discussions of convergence bounds in
Section 5.1 and the proposed intra-cluster aggregation strategy
in Section 5.2, we define the cluster construction problem for
accelerating HA. Specifically, we determine a clustering strat-
egy = {T; j}v,ev,s;es to minimize the convergence bound
F(x,wo,T) in Eq. (49) with given intra-cluster aggregation
completion time constraints.

On the one hand, minimizing the convergence bound
F(x,wo,T) is equivalent to improving the training perfor-
mance by jointly considering several critical factors, e.g., data
distribution among clusters, aggregators’ participation fre-
quency (for asynchronous patterns), and inter-cluster topol-
ogy (for decentralized patterns). Note that the values of some
parameters depend on the data distribution among workers,
such as 1, L and §;, and we employ the method in [8] for
estimation.

On the other hand, if workers are clustered into aggrega-
tors with long communication time, the benefit of minimizing
the convergence bound on accelerating FL training may be
reduced or even nullified. Therefore, it is necessary to limit
the completion time of intra-cluster aggregation, i.e.,

opt mazx
L (@) < L] (52)

Algorithm 2 Unified Clustering Algorithm for Hierarchical
Federated Learning (FedUC)

Input: Data size D;, Df, Yv; € V, Ve, € C; completion time
threshold L', Vs; € S
Output: Final clustering strategy x
1: for each v; € V do

2:  foreachs; € Sdo

3: T = 0

4: Sort each worker v; € V in descending order by D; as Q
5: ftemp = +00

6: for each v; € Q do

7. foreach s; € S do

8: Tij = 1

9: if L (@) > L7" then

10: ;5 =0

11 continue

12: if F(x,wo,T) < Fiemp then
13: Fremp = F(x,wo,T)

14: jf =7

15: Tij = 0

16: T j* = 1
17: return final clustering strategy x

for Vs; € §. L"“" is the completion time threshold of clus-
ter V;’s intra-cluster aggregation and L' (z) is the optimal
completion time under clustering strategy x, which can be
obtained by Eq. (51). Therefore, we formulate the cluster

construction problem as follows:

(P1) : min F(x, wo,T) (53a)
st LP'(x) < L], s; €S (53b)
> w =1, Yo, €V (53¢)
sjeS
Ti5 € {0, 1}, Yv; € V,Sj €S. (53d)

The first set of inequalities (53b) represents that the comple-
tion time of each intra-cluster aggregation does not exceed
the threshold. The second set of equalities (53c) represents
that each worker belongs to a unique cluster. Our target is
to minimize the convergence bound, i.e., min F(x, wo, T).

Remark 2 : In the above description, we assumed that the workers
are relatively stationary, so that a fixed clustering strategy can be
made by FedUC. However, FedUC can also handle worker mobility
by using a logger to track the historical locations of the moving
workers [30]. In this way, the clustering strategy can be periodically
updated by applying FedUC algorithm.

5.4 Unified Clustering Algorithm

We introduce the unified clustering algorithm (FedUC) to
solve P1 for hierarchical federated learning, which is formally
described in Alg. 2.

The main idea of our algorithm is to greedily determine
which aggregator each worker belongs to one by one, so
as to minimize the current objective function F(x,wq,T).
Specifically, we first initialize the states of all workers, i.e.,
set ;; = 0, for all v; € V,s; € S, then sort the workers
in the descending order of their data sizes as a queue Q
(Lines 1-4). Note that the purpose of sorting the workers is to
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make the algorithm preferentially traverse the workers with
more data, and in this way, the performance of the algorithm
is usually better than traversing in random order. Then we
decide which aggregator each worker in Q is clustered to in
turn. For each worker v;, we attempt to organize it to each
aggregator s; € S, i.e, set ;; = 1 (Line 8), and calculate
the values of L7” “(x) and F(x, wo,T). On the one hand, if
the intra- cluster completion time of V; exceeds the threshold
L7**, worker v; will not be organized to aggregator s, i.e.,
resettmg Tij = 0 (Lines 9-11). On the other hand, if the
values of LOp ( ) satisfy the constraints (53b), we traverse all
aggregators s; € S and organize worker v; to the aggregator
sj+ that minimizes the value of F(x, wo,T) (Lines 7-16). The
algorithm will terminate until all workers in Q are organized
to the aggregators. Since we first sort the /N workers according
to the amount of data, and then traverse the clustering of
each worker to M aggregators, the algorithm FedUC has
polynomial time complexity O(N log N + NM).

6 PERFORMANCE EVALUATION

In this section, we first describe the system setup (Section 6.1).
Then we explore the clustering results under different patterns
(Section 6.2). Finally, we compare the training performance of
our proposed FedUC with that of other clustering algorithms
through extensive simulations (Section 6.3).

6.1 System Setup
6.1.1 Environment

To implement federated learning in a large-scale edge sys-
tem, we conduct an experimental environment using PySyft
(version 0.2.9) [45]. PySyft is a Python library for privacy-
preserving deep learning under the PyTorch framework,
which can create virtual workers for FL training. The virtual
workers are deployed on an AMAX deep learning worksta-
tion with an 8-core Intel(R) Xeon(R) CPU (E5-2620v4) and 4
NVIDIA GeForce RTX 2080Ti GPUs with 11GB GDDR6, and
each of them can be regarded as an individual machine and
trains local model on its own dataset. Our experiments are
performed on Ubuntu 18.04, CUDA v10.0, cuDNN v7.5.0.

6.1.2 Topology and Transmission Model

We consider a typical edge computing system [46] with a
40mx40m region divided by 4x4 grids as shown in Fig. 4,
and an aggregator is deployed in the center of each grid,
so totally M=16 aggregators s;-s16 are deployed. Under the
DecSyn pattern, each aggregator will send/receive cluster
models to/from its neighbor aggregators, i.e., aggregators
closest to it in the up, down, left and right directions. For
example, aggregator s can exchange its cluster model with
aggregators sa, S5, 57 and sjg. A centralized PS is deployed
at the junction of grids 1, 2, 5 and 6, such that the required
time for transferring models between the PS and aggregators
varies. In this way, we simulate the CenAsy pattern where
aggregators participate in the global aggregation with differ-
ent frequency. 100 workers v;-v100 with data of different sizes
and distributions are randomly deployed across the region,
and each of them will be clustered to a unique aggregator.
We simulate the model distributing time L¢ , training time

©,57
L7 and uploading time L;'; for each worker v; and aggregator

1 T I
| | |
| | |
| | |
St | S LS S
-------
PS | |
| , | |
| | |
Ss :Ss : Sy : Ss
_______
| | |
| | |
| | |
S | Sw | Su | Sn
------- S S S ——
| | |
| | |
| | |
Ss 1 Ss | S | S
| | |

g. 4: Grid Network.
TABLE 5: Settlngs of Some System Parameters.

Parameters Values
Channel bandwidth W; 10 MHz [47]
Aggregators’ transmission power pj-l 33 dBm

50-100 mWatts [48]
-100 dBm [48]
-40 dB [49]

Workers’ transmission power p;'
Noise power o
path-loss constant ho

s;. The model training time can be calculated by L§ = (;D;,
where (; is the training time of one sample on worker v;.
h;,; denotes the channel gain from worker v; to aggregator
s;, and p; denotes the transmission power of worker v;. As a
result, the transmission rate from v; to s; can be given by the
Shannon capacity [49], 7', = W;log,(1 + pihi "ii), where W;
is channel bandwidth on aggregator s; for model delivering,
pY is the transmission power of each worker v; and o? is
the noise power. The channel gain for calculating the wire-
less transmission is modeled by the pass-loss h;,; = hod,; ; 4
model [50], where hg is the path-loss constant and d; ; is the
distance between worker v; and aggregator s;. Let £ denote
the model size. Thus the model uploading time from worker
v; to aggregator s; can be calculated by L}'; = =-. Similarly,

we can obtain the model distributing time L The settings

of some important parameters are listed in Table

6.1.3 Models and Datasets

The experiments are conducted with two classical models (i.e.,
LR [51] and CNN [52]) and on two datasets (MNIST [53] and
CIFAR-10 [54]). MNIST consists of 60,000 handwritten digits
for training and 10,000 for testing, while CIFAR-10 includes
50,000 images for training and 10,000 for testing, and both of
them have ten different types of objects.

Similar to the existing works [30][55][56], we implement
the Non-IID data among workers by label skewed partition.
Specifically, the data in MNIST (or CIFAR-10) labeled as ‘0’
are distributed to workers v1-v1g, the data labeled as ‘1’ are
distributed to workers v11-v9,..., and the data labeled as ‘9’
are distributed to workers vg1-v10g.

The LR network architecture consists of three fully-
connected layers with 784, 512 and 512 units respectively, and
a softmax layer with 10 units. The CNN network architecture
consists of two 5x5 convolution layers (20, 50 channels for
MNIST and 32, 64 channels for CIFAR-10), each of which
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is followed by 2x2 max pooling, two fully-connected layers
(800, 500 units for MNIST and 1600, 512 units for CIFAR-10),
and a softmax layer with 10 units. The model sizes are 2.56 MB
(LR on MNIST), 1.64MB (CNN on MNIST) and 3.35MB (CNN
on CIFAR-10), respectively. We adopt the same mini-batch size
64 for all workers. The learning rate is set as n = 0.01 for
MNIST, and 7 = 0.05 for CIFAR-10.

6.1.4 Benchmarks and Performance Metrics

We compare our clustering algorithm FedUC with two typical
clustering benchmarks.

o Communication-aware clustering (ComAw) [24]: Each
worker is clustered to the aggregator with the shortest
communication time.

o Data-aware clustering (DatAw) [21]: Workers are clus-
tered based on the statistical properties of data distribu-
tion among them.

ComAw focuses solely on minimizing communication time,
while DatAw aims to optimize the clustering based on the
characteristics of the data distribution. In contrast, our FedUC
algorithm takes into account additional factors, such as the
frequency of clusters participating in inter-cluster aggrega-
tion and the inter-cluster topology. By comparing FedUC
with these baseline schemes, we can effectively evaluate the
performance and effectiveness of our proposed algorithm in
considering a broader range of factors beyond communication
and data distribution in the clustering process.

We implement FedUC, ComAw and DatAw under differ-
ent inter-cluster aggregation patterns, i.e., CenSyn, CenAsy,
DecSyn and DecAsy. We set 77 = 5, ie., each aggregator
performs 5 intra-cluster aggregations before each inter-cluster
aggregation.

To evaluate the training performance, we adopt three per-
formance metrics. 1) Loss Function reflects the training process
of the model and whether convergence has been achieved or
not. 2) Accuracy is the most common performance metric in
classification problems, which is defined as the proportion of
the right data classified by the model to all test data. 3) Training
Time is adopted to evaluate the training speed.

6.2 Clustering Results

In this section, we explore some values of key indexes (e.g.,
the degree of Non-IID, intra-cluster aggregation time) after
the execution of different clustering algorithms. In addition,
we explore the impacts of some parameters (e.g., aggregators’
participation frequency under CenAsy, the number of com-
munication links to aggregators under DecSyn) on clustering
for FedUC. The exploration of these factors is beneficial for
understanding the evaluation results in Section 6.3.

6.2.1 The Degree of Non-1ID

We apply the earth mover distance (EMD) [12] to represent
the difference of data distribution between cluster V;’s dataset
and the global dataset, i.e.,, P; = EMD(D, D;). Fig. 5 shows
the average of EMD P = 3° s,;es Pj for FedUC, ComAw and

DatAw under different inter-cluster aggregation patterns. P
can be regarded as a index to evaluate the degree of data
Non-IID among clusters. As is shown, the values of P for
ComAw and DatAw remain 0.394 and 0.182 unchanged under

w
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xe
0.1+ s %1
<
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Fig. 5: Average EMD under
Different Pattern.

Fig. 6: Maximum Intra-cluster
Aggregation Time under Dif-
ferent Pattern.
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to Aggregator (DecSyn).

Participation Frequency
Fig. 7: Number of Clustered

Workers vs. Participation Fre-
quency (CenAsy).

different patterns, since the clustering strategies of ComAw
and DatAw are consistent under different patterns. The values
of P for FedUC are 0.191, 0.242, 0.223 and 0.256 under CenSyn,
CenAsy DecSyn and DecAsy, respectively, which are slightly
larger than those in DatAw. This shows that by deploying Fe-
dUC clustering algorithm, the degree of data Non-1ID among
clusters can close to that by deploying DatAw.

6.2.2 Intra-cluster Aggregation Time

Fig. 6 shows the maximum intra-cluster aggregation time of
all clusters. As is shown, the maximum intra-cluster aggre-
gation time for ComAw and DatAw remain 2.88s and 3.72s
unchanged under different patterns. The maximum intra-
cluster aggregation time for FedUC are 2.44s, 2.72s, 2.61s and
2.78 under CenSyn, CenAsy DecSyn and DecAsy, respectively.
The reason FedUC is superior to ComAw in terms of the
intra-cluster aggregation time is that FedUC restricts the intra-
cluster aggregation time as shown in Eq. (52). Whereas, in
ComAw, workers are clustered to the aggregators with the
shortest communication time, which may cause some aggre-
gators to communicate with excessive workers and increase
the intra-cluster aggregation time.

6.2.3 The Impact of Participation Frequency under CenAsy

Fig. 7 shows the number of workers clustered to aggregators
51-516 after the FedUC clustering algorithm is executed under
CenAsy pattern. As shown by the general trend of the fitting
curve, the number of clustered workers increases with the
aggregators’ participation frequency. For example, there are
12 workers clustered to aggregator sg with participation fre-
quency 0.148, while only 2 workers clustered to aggregator s;2
with participation frequency 0.014. This indicates that workers
tend to be clustered to aggregators with larger participation
frequency under CenAsy pattern.
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Fig. 9: Loss/Accuracy vs. Round (LR on MNIST, CenSyn).
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Fig. 13: Loss/Accuracy vs. Round (CNN on MNIST, Ce-
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6.2.4 The Impact of Topology under DecSyn

Fig. 8 shows the number of workers clustered to aggregators
51-s16 after the FedUC clustering algorithm is executed under
DecSyn pattern. As shown in this figure, the average numbers
of workers clustered to aggregators with links numbers of 2,
3, and 4 are 3, 6.125 and 10.25, respectively, which shows that
the expected number of workers clustered to an aggregator is
positively correlated with the number of links. For example,
there are 13 workers clustered to aggregator s;o with 4 com-
munication links, while only 2 workers clustered to aggregator
s1 with 2 communication links. This indicates that workers
tend to be clustered to aggregators with dense communication
links under DecSyn pattern.

6.3 Performance Evaluation
6.3.1

For different inter-cluster aggregation patterns, e.g., CenSyn,
CenAsy, DecSyn and DecAsy, our clustering algorithm FedUC
can always achieve better convergence performance than Co-
mAw and DatAw, but the degree of performance improve-
ment varies with different patterns.

Figs. 9-11 show that, under the CenSyn pattern, the con-
vergence performance of FedUC is slightly better than that
of ComAw, while is similar to that of DatAw. This is because
ComAw clusters workers without considering the data distri-
bution, and its convergence performance is worse than that

Convergence Performance
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Fig. 10: Loss/ Accuracy vs. Round (CNN on MNIST, CenSyn).
Left: Loss; Right: Accuracy.
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Fig. 12: Loss/Accuracy vs. Round (LR on MNIST, CenAsy).
Left: Loss; Right: Accuracy.
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Fig. 14: Loss/Accuracy vs. Round (CNN on CIFAR-10, Ce-
nAsy). Left: Loss; Right: Accuracy.

of both FedUC and DatAw. For example, in Fig. 9, the con-
vergence accuracy of FedUC, DatAw and ComAw is 81.4%,
81.0%, 79.4% after 500 rounds, respectively. The number of
training rounds to achieve 75% accuracy is 254, 259 and
337, respectively. FedUC can reduce the number of required
training rounds by about 24.6% compared with ComAw.

Figs. 12-14 show that during the training process under
CenAsy, the loss and accuracy curves jitter more violently
compared with that under CenSyn due to the asynchronism of
global aggregation, but the jitter degree varies with different
clustering algorithms. Since ComAw clusters workers without
considering the data distribution, it is easy to cause the inter-
cluster data highly Non-IID (large P). Unfortunately, it has
been pointed out that asynchronous aggregation aggravates
the negative effect of Non-IID issue on convergence perfor-
mance [30]. Although DatAw clusters workers based on the
data distribution among workers, it does not consider the
participation frequency of aggregators in global updating,
which may cause a large number of workers to be clustered
to low-frequency aggregators, reducing convergence perfor-
mance. In FedUC, not only the data distribution is considered,
which makes inter-cluster data distribution as close to IID as
possible, but also the participation frequency of aggregators
is taken account. Therefore, the jitter of FedUC is greatly
reduced and the convergence performance can be significantly
improved compared with that of ComAw and DatAw. For
example, in Fig. 12, after 10000 rounds of training, the training
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Fig. 15: Loss/Accuracy vs. Round (LR on MNIST, DecSyn).
Left: Loss; Right: Accuracy.
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Fig. 19: Loss/ Accuracy vs. Round (CNN on MNIST, DecAsy).
Left: Loss; Right: Accuracy.

accuracy of ComAw varies between 63% and 73%, that of
DatAw varies between 66% and 77%, while that of FedUC
varies between 79% and 80%. Besides, the number of training
rounds to achieve stable 60% accuracy is 9201, 5702 and 1913
for ComAw, DatAw and FedUC, respectively. FedUC reduces
the number of training rounds by about 79.2% and 66.5%
compared with ComAw and DatAw, respectively.

Figs. 15-17 show that, under DecSyn, the convergence
performance of FedUC is much better than that of ComAw
and DatAw. Similar to the case under CenAsy, the clustering
method of DatAw does not consider the inter-cluster topology,
and a large number of workers may be clustered to aggre-
gators with sparse links, reducing convergence performance.
For example, in Fig. 15, the training accuracy of FedUC,
DatAw and ComAw is 81.8%, 73.7%, 65.2% after 500 rounds,
respectively. The number of training rounds to achieve 65%
accuracy is 85, 256 and 491, respectively. FedUC can reduce
the number of training rounds by about 82.7% and 66.8%
compared to ComAw and DatAw, respectively.

Figures 18-20 demonstrate the comparison of FedUC with
ComAw and DatAw under the DecAsy pattern. Similar to the
observations made under the CenAsy and DecSyn patterns,
DatAw clusters workers without considering the inter-cluster
topology and the participation frequency of aggregators in
global updating, which may lead to a suboptimal convergence
performance. In contrast, FedUC considers a broader range
of factors, including the above two factors, beyond com-
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Fig. 16: Loss/ Accuracy vs. Round (CNN on MNIST, DecSyn).
Left: Loss; Right: Accuracy.
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Fig. 20: Loss/Accuracy vs. Round (CNN on CIFAR-10,
DecAsy). Left: Loss; Right: Accuracy.

munication and data distribution in the clustering process.
Consequently, under the DecAsy pattern, FedUC showcases
superior convergence performance compared to ComAw and
DatAw. For example, in Figure 18, after 5000 rounds of train-
ing, the training accuracy of ComAw varies between 61% and
75%, that of DatAw varies between 70% and 78%, while that
of FedUC varies between 79% and 82%. Besides, the number
of training rounds to achieve stable 60% accuracy is 4487, 3301
and 884 for ComAw, DatAw and FedUC, respectively. FedUC
reduces the number of training rounds by about 80.3% and
73.2% compared with ComAw and DatAw, respectively.

6.3.2

Figs. 21-24 show the impact of different number M of clusters
on the convergence performance of CenSyn, CenAsy, DecSyn
and DecAsy.

Fig. 21 shows that, under CenSyn, the number of training
rounds for the target accuracy has little correlation with the
number of clusters. For example, when the number M of
clusters in FedUC is set as 9, 16 and 25, the number of
training rounds to achieve stable 80% accuracy is 310, 307 and
302, respectively, while that in ComAw is 318, 320 and 355,
respectively.

Fig. 22 shows that the convergence performance decreases
with the increasing number of clusters for CenAsy. For ex-
ample, given the number of clusters of 9, 16, 25 in FedUC,
the number of training rounds required to achieve stable 60%

Impact of the Number of Clusters
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Fig. 21: Loss/Accuracy vs. Round (CNN on MNIST, CenSyn).
Left: Loss; Right: Accuracy.
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accuracy is 713, 2385 and 3039, respectively. While in ComAw
it separately needs 5227, 8285 and 9954 training rounds to
achieve stable accuracy of 50%. Meanwhile, the convergence
performance can be greatly improved for different number of
clusters by deploying FedUC. For example, given 9 clusters,
it requires 713 and 5227 training rounds to achieve stable
50% accuracy for FedUC and ComAw, while given 25 clusters
requires 3039 and 9954 rounds. By deploying FedUC under
CenAsy, the number of required training rounds can be re-
duced by 69.5%-87.1% compared with deploying ComAw.
Fig. 23 shows that, under DecSyn, the convergence perfor-
mance decreases with the increasing of the number of clusters
in ComAw. For example, when the number of clusters in
ComAw is set as 9, 16 and 25, the number of training rounds
to achieve 70% accuracy is 151, 349 and 498, respectively.
Nevertheless, the impact of the increasing number of clusters
has little effect on the convergence performance for FedUC.
For example, when the number of clusters in FedUC is set as 9,
16 and 25, the number of training rounds required to achieve
80% accuracy is 261, 285 and 302, respectively. This indicates
that the convergence performance of FedUC does not decrease
obviously with more clusters in the system, which enhances
the scalability for DecSyn. When the number of clusters is
small, whether to deploy FedUC or not has little impact on the
convergence performance, but when the number of clusters
increases, the performance improvement of deploying FedUC
gets more and more significant. For example, given 9 clusters,
it requires 146 and 151 rounds of training to achieve stable
70% accuracy for FedUC and ComAw, respectively, while the
numbers of training rounds reach 158 and 495 when M=25.
Fig. 24 shows that the convergence performance decreases
with the increasing number of clusters for CenAsy. For ex-
ample, given the number of clusters of 9, 16, 25 in FedUC,
the number of training rounds required to achieve stable 60%
accuracy is 563, 2189 and 3424, respectively. While in ComAw
it separately needs 1723, 3464 and 4439 training rounds to
achieve stable accuracy of 50%. Meanwhile, the convergence
performance can be greatly improved for different number of
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Fig. 22: Loss/Accuracy vs. Round (CNN on MNIST, Ce-
nAsy). Left: Loss; Right: Accuracy.
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Fig. 24: Loss/ Accuracy vs. Round (CNN on MNIST, DecAsy).

Left: Loss; Right: Accuracy.
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TABLE 6: Training time required to achieve target accuracy.

Accuracy | ComAw DatAw FedUC
50% 198s 153s 107s
CenSyn 60% 295s 222s 158s
70% 659s 537s 367s

80% 1841s 1533s 1026s
50% 521s 276s 86s
CenAsy 60% 1170s 626s 140s
70% 2367s 1632s 340s
80% 5388s 4133s 916s
50% 503s 163s 42s
DecSyn 60% 1165s 620s 153s
70% 3063s 1396s 327s
80% 7010s 3621s 948s
50% 470s 184s 37s
DecAsy 60% 812s 472s 103s
70% 1553s 1126s 273s
80% 4274s 2832s 804s

clusters by deploying FedUC. For example, given 9 clusters, it
requires 433 and 563 training rounds to achieve stable 50%
accuracy for FedUC and ComAw, while given 25 clusters
requires 1753 and 3424 rounds. By deploying FedUC under
CenAsy, the number of required training rounds can be re-
duced by 23.1%-48.9% compared with deploying ComAw.

6.3.3 Comparison of Training Time

In this section, we evaluate the training time of ComAw,
DatAw and FedUC over LR on MNIST. As shown in Table
6, FedUC greatly accelerates HA compared with the other
two methods under the patterns CenSyn, CenAsy, DecSyn
and DecAsy. For example, under CenSyn, the time required
to reach 80% accuracy is 1841s, 1533s and 1026s for ComAw,
DatAw and FedUC, respectively. FedUC can accelerate HA by
about 1.79x and 1.49x compared with ComAw and DatAw.
Under CenAsy, the time required to reach 80% accuracy is
5388s, 4133s and 916s for ComAw, DatAw and FedUC, respec-
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tively. FedUC can accelerate HA by about 5.88x and 4.51x
compared with ComAw and DatAw, respectively. Under Dec-
Syn, the time required to reach 80% accuracy is 7010s, 3621s
and 948s for ComAw, DatAw and FedUC, respectively. FedUC
can accelerate HA by about 7.39x and 3.82x compared with
ComAw and DatAw. Under DecAsy, the time required to reach
80% accuracy is 4274s, 2832s and 804s for ComAw, DatAw and
FedUC, respectively. FedUC can accelerate HA by about 5.32 x
and 3.52x compared with ComAw and DatAw. The reason
FedUC can greatly accelerate model training is that FedUC
not only has better convergence performance (as shown in
Fig. 9-24), but also has shorter intra-cluster aggregation time
(as shown in Fig. 6) compared with ComAw and DatAw under
different patterns.

7 CONCLUSION

In this paper, we have explored the cluster construction
problem under different patterns for accelerating hierarchical
federated learning. We have theoretically analyzed the quan-
titative relationship between the convergence bounds of four
different inter-cluster aggregation patterns (CenSyn, CenAsy,
DecSyn and DecAsy) and several factors, e.g., data distribution
among clusters, frequency of clusters participating in inter-
cluster aggregation, and inter-cluster topology. Based on the
convergence analysis, we have designed a unified clustering
algorithm FedUC to solve the cluster construction problem
given the time constraints for intra-cluster aggregation. The
experimental results indicate that the model training of Cen-
Syn, CenAsy, DecSyn and DecAsy can be significantly accel-
erated by deploying our FedUC algorithm.
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