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FedSA: A Semi-Asynchronous Federated Learning
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Abstract— Federated learning (FL) involves training machine
learning models over distributed edge nodes (i.e., workers) while
facing three critical challenges, edge heterogeneity, Non-IID data
and communication resource constraint. In the synchronous
FL, the parameter server has to wait for the slowest workers,
leading to significant waiting time due to edge heterogeneity.
Though asynchronous FL can well tackle the edge heterogeneity,
it requires frequent model transfers, resulting in massive commu-
nication resource consumption. Moreover, the different relative
frequency of workers participating in asynchronous updating
may seriously hurt training accuracy, especially on Non-IID data.
In this paper, we propose a semi-asynchronous federated learning
mechanism (FedSA), where the parameter server aggregates a
certain number of local models by their arrival order in each
round. We theoretically analyze the quantitative relationship
between the convergence bound of FedSA and different fac-
tors, e.g., the number of participating workers in each round,
the degree of data Non-IID and edge heterogeneity. Based on
the convergence bound, we present an efficient algorithm to
determine the number of participating workers to minimize
the training completion time. To further improve the training
accuracy on Non-IID data, FedSA deploys adaptive learning rates
for workers by their relative participation frequency. We extend
our proposed mechanism to the dynamic and multiple learning
tasks scenarios. Experimental results on the testbed show that our
proposed mechanism and algorithms address the three challenges
more effectively than the state-of-the-art solutions.

Index Terms— Edge computing, federated learning, semi-
asynchronous mechanism, heterogeneity, non-IID.

I. INTRODUCTION

W ITH the increasing popularity of the Internet of Things
(IoT), significant amounts of data are generated from

the physical world per second [1]–[3]. Traditionally, these
huge amounts of data are forwarded to the remote cloud
for processing and training, which may cause a significant
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delay due to long-distance transmission, and potential privacy
leakage. To this end, edge computing is proposed to shift
more computation to the network edge, enabling efficient data
processing locally. Besides, it also promotes the landing of
federated learning (FL), which performs distributed machine
learning over edge nodes [4]–[6].

An FL system usually consists of one or multiple parameter
servers and a large number of edge nodes (i.e., workers),
following the typical parameter server (PS) architecture [7].
For simplicity, we assume one parameter server in the system.
Nevertheless, our solution can be easily extended to the
situation of multiple parameter servers. The FL procedure
usually consists of a certain number of rounds until model
convergence. In each round, workers perform the local updat-
ing, and the parameter server aggregates the local models from
workers. Since the workers expose their updated local models
to the parameter server instead of their raw data, FL can
efficiently protect workers’ privacy [8].

To implement effective FL, we should take the following
factors and challenges into considerations.

• Edge Heterogeneity: Workers may be various devices,
with diverse CPU capacities, data size and network
connections. As a result, the required time to perform
local updating and receive/upload models may vary sig-
nificantly. For example, if a device has poor computation
capacity or is under weak wireless channel conditions,
it will take a long time to perform local updating or model
delivering.

• Non-IID Data: A worker collects data from its physical
location directly. As a result, its local data often cannot be
regarded as the samples drawn uniformly from the overall
distribution. In other words, the data among workers usu-
ally are not independent-and-identically-distributed (i.e.,
Non-IID) [9]. It has been pointed out that the performance
of FL will be significantly degraded in the presence of
Non-IID data, in terms of the convergence rate and the
model accuracy [10]–[12].

• Communication Resource Constraint: The communi-
cation resource between workers and the parameter server
is usually constrained in edge computing [13]–[15].
Therefore, the parameter server may easily become
a communication bottleneck if it frequently distrib-
utes/receives models to/from workers [16].

Many well-known FL mechanisms have been proposed
since the first work in 2016 [8]. We summarize the advantages
and disadvantages of some typical FL mechanisms in Table I.
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TABLE I

COMPARISON OF DIFFERENT FL APPROACHES

There are three main types of FL mechanisms. The first type
is synchronous FL [9], [17], [18], [23], [24]. Specifically,
after the parameter server receives the local models from all
workers or a pre-selected subset of workers, it aggregates
these local models into a new global model for the next
round. There are two cases. 1) All workers participate in the
global updating, called full participation in each round [17],
[23]. Due to edge heterogeneity, the completion time of all
workers varies significantly, which is known as the straggler
problem [25]. Since the single-round duration depends on the
maximum completion time of all workers, it may lead to a long
or even unacceptable training time. 2) A pre-selected subset
of workers participates in the global updating, called partial
participation [18], [24]. Nevertheless, only partial workers
participate in each round of training, while the others are
idle, which makes the computation resource in the system
under low utilization and the global model needs more time
until convergence. Furthermore, in practical scenarios, since a
worker, that participates in the global updating, may fail due to
mobility, power-off or weak connection, the parameter server
should wait a relatively long time even until the current round
times out, leading to poor scalability.

The second type is asynchronous FL, in which the parameter
server performs global updating as soon as it receives a local
model from any worker, and then sends the updated global
model back [19], [20], [26]. Since there is no need to wait for
other local models on the parameter server, this mechanism
has a short single-round duration. Besides, when a worker
participates in the global updating, the remaining workers are
still training and uploading their local models, so there are
no idle workers. However, the existing asynchronous mech-
anisms have two main drawbacks. Firstly, the asynchronous
mechanisms may cause significant communication resource
consumption as they require frequent model transfers between
workers and the parameter server [27]. Secondly, the exis-
tence of stragglers leads to the different relative frequency of
workers participating in asynchronous updating, which leads
to the large staleness of their local models relative to the global
model [28], and causes lower training accuracy, especially on
Non-IID data.

To overcome the detrimental effects of stragglers in syn-
chronous FL (i.e., long single-round duration) and asynchro-
nous FL (i.e., staleness), the third type is semi-asynchronous
FL, which forces to synchronize stale local models while

performing global updating asynchronously [21], [22], [29].
However, these semi-asynchronous FL mechanisms assign
the number of workers participating in the global updating
without quantitatively considering any factors, such as the
data distribution among workers and edge heterogeneity (e.g.,
the various completion time of workers), which may vastly
affect the training performance. For example, the authors [21],
[29] propose that only one worker participates in the global
updating of each round. However, it may easily cause to
synchronize some slow workers’ local models due to their
large staleness before they complete local training. As a
result, these slow workers may never participate in the global
updating, which decreases the training accuracy, especially on
Non-IID data. The authors of SAFA [22] claim that the training
performance is closely associated with the number (e.g., M )
of workers participating in the global updating. However,
they do not give the quantitative analysis between training
performance and the number of participating workers, data
distribution, workers’ completion time, nor do they propose
the method to determine the optimal value of M . Actually,
it is a major challenge to determine the optimal M for different
data distributions and edge heterogeneity scenarios.

To relieve these disadvantages, we propose a novel
semi-asynchronous federated learning (FedSA) mechanism.
Specifically, in each round, after the parameter server receives
the local models from a certain number (e.g., M ) of workers,
it aggregates those local models, depending on workers’ arrival
order at the parameter server. Furthermore, we theoretically
analyze the quantitative relationship between training per-
formance and several factors, such as the number M of
participating workers, data distribution, edge heterogeneity
and the communication budget. Based on this, we propose
an efficient algorithm to determine the optimal value of M
according to edge heterogeneity and data distribution among
workers, so as to minimize the training time given the com-
munication budget. The main contributions are summarized as
follows:

• We design a semi-asynchronous FL mechanism, called
FedSA, for heterogeneous edge computing. We ana-
lyze the relationship between the convergence bound
of FedSA and different factors, e.g., parameter M ,
the degree of data Non-IID among workers and edge
heterogeneity. The convergence analysis of FedSA is also
provided.
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TABLE II

KEY NOTATIONS

• We propose an efficient algorithm to determine the
optimal M so as to minimize the training time given
the communication budget. Furthermore, we extend the
proposed algorithm to the dynamic and multiple learning
tasks scenarios.

• To further improve the training accuracy on Non-IID
data, we deploy adaptive learning rates for workers by
the relative frequency of their participating in the global
updating.

• We implement our proposed mechanism and algorithm on
a testbed. Experimental results show that the proposed
solution is more efficient than the state-of-the-art solu-
tions on the datasets with different degrees of Non-IID.

II. FEDSA MECHANISM AND PROBLEM FORMULATION

A. Federated Learning (FL)

For ease of expression, some key notations in this paper are
listed in Table II. We consider a federated learning system with
a set of workers V = {v1, v2, . . . , vN}. Each worker vi trains
a model on its local dataset Di, with the size of Di � |Di|.
The total amount of data is D =

∑
vi∈V Di. Suppose that Di

holds the training data: di,1, di,2, …, di,Di . The loss function
of worker vi is defined as

Fi(w) � 1
Di

∑
di,j∈Di

f(w; di,j), (1)

Algorithm 1 Semi-Asynchronous Federated Learning
(FedSA)
1: k = 0
2: while F (wk) − F (w∗) > ε do
3: Processing at Each Worker vi
4: if Receive wk from the server then
5: Update local model by Eq. (3)
6: Upload local model wi

k+1

7: Processing at the Parameter Server
8: Vk = ∅

9: while |Vk| < M do
10: Receive local model xik from worker vi
11: Vk = Vk ∪ {vi}
12: Update global model by Eq. (5)
13: for each vi ∈ V do
14: if vi ∈ Vk or τ ik > τ0 then
15: Distribute updated model wk and learning rate ηi
16: k = k + 1
17: Return the final global model wk

where w is the parameter vector and f(·) is a user-specified
loss function, e.g., linear regression, logistic regression,
support vector machine (SVM). The global loss function on
all the distributed datasets is defined as

F (w) �
∑
vi∈V DiFi(w)

D
. (2)

The learning problem is to obtain the optimal vector w∗ so
as to minimize F (w), i.e., w∗ = argminw F (w).

B. Semi-Asynchronous Federated Learning (FedSA)

We propose the semi-asynchronous FL mechanism, called
FedSA, which is formally described in Alg. 1. Since the
parameter server architecture consists of a parameter server
and a set of workers, we describe the algorithm on both the
worker side and the server side.

On the worker side (Lines 3-6), after a worker vi receives
a global model wk, it performs several iterations for local
updating by

wi
k+1 = wk − ηi∇Fi(wk), (3)

where ηi is the learning rate (i.e., step size) of worker vi.
Due to edge heterogeneity, we adopt the adaptive learning rate
for model training, which will be discussed in Section II-D.
Then worker vi uploads its updated local model wi

k+1 to the
parameter server. For ease of interpretation, we assume that
each worker performs only one iteration in each local updating.
Nevertheless, the proposed mechanism and analyses are still
applicable to the case with multiple iterations in each local
updating, as long as changing the definition of wi

k+1 to the
model after multiple iterations in Eq. (3).

On the parameter server side (Lines 7-15), let Vk be the
set of workers participating in the global updating in round k,
with |Vk| = M . The received local model from worker vi in
round k is denoted as xik . Since the workers participate in the
global updating asynchronously, xik is not necessarily equal to
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Fig. 1. Illustration of the FedSA mechanism when M = 2.

wi
k. Let τ ik be the interval between the current round k and

the last received global model version by worker vi, called the
staleness. In fact, xik is equal to wi

k−τ i
k
, and wi

k−τ i
k

is trained
from a previous version of the global model on vi, i.e.,

xik = wi
k−τ i

k
= wk−τ i

k−1 − ηi∇Fi(wk−τ i
k−1). (4)

On receivingM local models, the parameter server performs
the global updating by

wk = (1 −
∑
vi∈Vk

Di

D
)wk−1 +

∑
vi∈Vk

Di

D
xik. (5)

Then, the parameter server sends the updated global model
back to each worker in Vk or whose staleness is greater than
the staleness threshold τ0 (Line 15).

We illustrate the procedure of FedSA through an example
in Fig. 1 with M = 2. For instance, after worker v1 receives
the global model w1, it performs local updating, derives the
local model w1

2, and sends w1
2 to the parameter server in

round 2. That is, x1
2 = w1

2 and the staleness is τ1
2 = 2−2 = 0.

On the other hand, worker v3 updates the initial model w0 to
the local model w3

1, which is sent to the parameter server in
round 2. Then, x3

2 = w3
1 and the staleness is τ3

2 = 2− 1 = 1.
On receiving two first arrival models from v3 and v1 in
round 2, the parameter server aggregates global model w1,
the received local models x1

2 (i.e., w1
2) and x3

2 (i.e., w3
1) to

derive the new global model w2.

C. Effect of Staleness Threshold τ 0

Due to the edge heterogeneity, the parameter server may
receive some local models with large staleness relative to
the global model, or even encounter failure. Besides, workers
may suffer from the decline of model training capability
due to unpredictable accidents (e.g., instability of wireless
connections, random errors, resource occupation, and battery
exhaustion) in practice, which aggravates the straggler prob-
lem. Too stale local models will greatly affect the training
performance. To address this challenge, the parameter forces
to synchronize the local models with staleness greater than a
staleness threshold τ0 [21], [22]. Specifically, the parameter
server checks the staleness τ ik of each worker vi in each
epoch k. If τ ik exceeds the staleness threshold τ0, the para-
meter server distributes the current global model wk to vi
(Lines 14-15). In this way, too stale local models will be
excluded to participate in the global updating, but it may cause
additional communication resource consumption.

D. Adaptive Learning Rate

In Section II-B, the arrival frequency (i.e., how often work-
ers participate in the global updating) of different workers in
FedSA may be diverse due to a host of practical reasons, such
as the data size, the CPU capacities and network connections.
We assume that worker vi participates in the global updating
with a relative frequency fi, which satisfies

∑
vi∈V fi = 1.

How to measure the relative frequency will be described in
Section IV-B. We deploy the adaptive learning rate ηi for each
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worker vi according to its relative frequency of participating in
the global updating for better learning performance. Intuitively,
if a worker frequently participates in the global updating due to
its larger computation capacity or shorter communication time,
the corresponding learning rate should be small [20], [30].
The adaptive learning rate ηi can be set as:

ηi =
λ

N · fi , (6)

where λ is the global learning rate. It is obvious that λ
is equal to the weighted average learning rate of workers:∑

vi∈V fiηi = N · λN = λ. Eq. (6) represents that the learning
rate of vi is inversely proportional to its relative participation
frequency fi. As a result, given λ and fi, the learning rate ηi
of worker vi can be determined accordingly.

E. Problem Formulation

In FedSA, different numbers (i.e., M ) of workers participat-
ing in the global updating of each round will lead to various
performance (e.g., communication resource consumption and
completion time) of a single round. We denote b as the amount
of transmitted data for model exchanging between a worker
and the parameter server once, including model distributing
and uploading. Let tk denote the completion time of round k.
We formulate our problem as follows:

(P1) : min
K∑
k=1

tk (7a)

s.t. F (wK) ≤ F (w∗) + ε (7b)

K ·M · b ≤ B (7c)

M ∈ {1, 2, . . . , N}. (7d)

The first inequality (7b) represents that the global model will
converge after K rounds, where ε is the convergence threshold
representing the training accuracy. The second inequality (7c)
represents that the communication consumption during K
training rounds does not exceed a communication budget B.
Our target is to minimize the training time, i.e., min

∑K
k=1 tk.

III. CONVERGENCE ANALYSIS

A. Assumptions

We make the following assumptions on the loss functions
Fi, ∀vi ∈ V .

Assumption 1 (Smoothness): Fi is L-smooth with L > 0,
i.e., for ∀w1,w2, Fi(w2)−Fi(w1) ≤ 〈∇Fi(w1),w2−w1〉+
L
2 ‖w2 − w1‖2.

Assumption 2 (Strong Convexity): Fi is μ-strongly convex
with μ ≥ 0, i.e., for ∀w1,w2, Fi(w2) − Fi(w1) ≥
〈∇Fi(w1),w2 − w1〉 + μ

2 ‖w2 − w1‖2.
Note that models with convex loss functions, such as linear

regression and support vector machines, satisfy Assumption 2.
The evaluation results in Section VI show that our mechanism
can also work well for models (e.g., CNN) whose loss func-
tions are non-convex.

Assumption 3 (Global Optimal): Assume that the learning
problem has at least one solution w∗, that minimizes the
global loss function F (w), i.e., ∇F (w∗) = 0.

B. Analysis of Convergence Bound

We analyze the convergence bound of our FedSA mecha-
nism in this section. Though the existing convergence analysis
in [28] takes into account the staleness, it only focuses on
one worker participating in each global updating and assumes
the uniform relative frequency for all workers, which is not
applicable to the edge heterogeneity scenarios. Not only do we
have multiple workers participating in each global updating,
but also we consider the complicated impact of workers’
relative frequency on training performance.

Before convergence analysis, we first state a key lemma
that is beneficial for our statement. Let lik = k − τ ik − 1 ≥ 0
denote the version of the global model on vi before round k.
For any k ≥ 1 and vi ∈ Vk, we construct three sequences of
nonnegative constants, xk , yik and zk, satisfying θk = xk +∑
vi∈Vk

yik < 1. For ease of expression, we define zmax =
max
k

{zk}, τmax = max
i,k

{τ ik} and θmax = max
k

θk. Let S(k)

be a sequence of real numbers for k ≥ 0.
Lemma 1: For arbitrary k > 0, if

S(k) ≤ xkS(k − 1) +
∑
vi∈Vk

yikS(lik) + zk,

then

S(k) ≤ ρkS(0) + δ, (8)

where ρ = θmax
1

1+τmax and δ = zmax

1−θmax
.

Proof: Since θmax < 1, θmax
− τmax

1+τmax > 1. It follows
that

xk +
∑
vi∈Vk

yikρ
−τmax

= xk +
∑
vi∈Vk

yikθmax
− τmax

1+τmax

≤ (xk +
∑
vi∈Vk

yik)θmax
− τmax

1+τmax

≤ θmax · θmax−
τmax

1+τmax = ρ.

It is obvious that Eq. (8) is true when k = 0. We assume
that the induction hypothesis holds for all k from 0 to k� − 1,
i.e.,

S(k) ≤ ρkS(0) + δ, ∀k ∈ {0, 1, . . . k� − 1}.
When k = k�, we deduce that

S(k�) ≤ xk′S(k� − 1) +
∑
vi∈Vk′

yik′S(lik′) + zk′

≤ xk′ (ρk
′−1S(0) + δ) +

∑
vi∈Vk′

yik′(ρ
li
k′S(0) + δ) + zk′

= xk′ρ
k′−1S(0) + xk′δ

+
∑
vi∈Vk′

(yik′ρ
k′−τ i

k′−1S(0) + yik′δ) + zk′

≤ (xk′ +
∑
vi∈Vk′

yik′ρ
−τmax)ρk

′−1S(0)

+ (xk′ +
∑
vi∈Vk′

yik′)δ + zk′



MA et al.: FedSA: SEMI-ASYNCHRONOUS FEDERATED LEARNING MECHANISM IN HETEROGENEOUS EDGE COMPUTING 3659

≤ ρ · ρk′−1S(0) + θmaxδ + zmax

= ρk
′
S(0) + δ.

Thus, we complete the induction and prove the correctness
of Eq. (8).

Next, we derive the specific values of xk, yik and zk in
our FedSA mechanism. For ease of expression, we define
η̃ = max

i
ηi as the maximum learning rate among workers,

α = M
N as the fraction of workers participating in each global

updating, and βi = Di

D as the proportion of vi’s data size to the
total amount of data. Besides, we denote ṼM as the set of M
workers with the smallest data size among all workers. Then
β̃ = min{∑vi∈Vk

βi} =
∑
vi∈ṼM Di/D is the proportion of

the sum of the data size of workers in VM to the total amount
of data.

Theorem 1: If η̃ < μ
L2 and λ < 1

2αβ̃(μ−L2η̃)
, after the initial

global model is updated by Eq. (5) for K rounds, the trained
model wK satisfies

E[F (wK)] − F (w∗) ≤ ρK(F (w0) − F (w∗)) + δ,

where ρ = [1 − 2αλβ̃(μ − η̃L2)]
1

1+τmax and δ =
η̃L

2β̃(μ−η̃L2)

∑
vi∈V βi‖∇Fi(w∗)‖2.

Proof: First, we analyze how the difference between
F (wk) and F (w∗) changes in each round by the global
updating in Eq. (5). Since F is convex and

∑
vi∈Vk

βi ∈ (0, 1],
we deduce that

F (wk) − F (w∗)

= F ((1 −
∑
vi∈Vk

βi)wk−1 +
∑
vi∈Vk

βixik) − F (w∗)

≤ (1 −
∑
vi∈Vk

βi)F (wk−1) +
∑
vi∈Vk

βiF (xik) − F (w∗)

= (1 −
∑
vi∈Vk

βi)(F (wk−1) − F (w∗))

+
∑
vi∈Vk

βi(F (xik) − F (w∗)). (9)

Let lik = k − τ ik − 1. By Eq. (4), we have xik − wlik
=

−ηi∇Fi(wlik
). According to Assumption 1, it is not hard to

prove that F is L-smooth. It follows

F (xik) − F (w∗)

≤ F (wlik
) − F (w∗) + 〈∇F (wlik

),xik − wlik
〉

+
L

2
‖xik − wli

k
‖2

= F (wlik
) − F (w∗) − ηi〈∇F (wlik

),∇Fi(wlik
)〉

+
η2
iL

2
‖∇Fi(wlik

)‖2

≤ F (wlik
) − F (w∗) − ηi〈∇F (wlik

),∇Fi(wlik
)〉

+ η2
iL(‖∇Fi(wlik

) −∇Fi(w∗)‖2 + ‖∇Fi(w∗)‖2)

(� ‖x+ y‖2 ≤ 2(‖x‖2 + ‖y‖2))

≤ F (wlik
) − F (w∗) − ηi〈∇F (wlik

),∇Fi(wlik
)〉

+ ηiη̃L(‖∇Fi(wlik
) −∇Fi(w∗)‖2 + ‖∇Fi(w∗)‖2).

(10)

According to Eq. (6), the expectation of∑
vi∈Vk

βiηi‖∇Fi(w∗)‖2 can be calculated as follows

E[
∑
vi∈Vk

βiηi‖∇Fi(w∗)‖2]

= M
∑
vi∈V

fi · βiηi‖∇Fi(w∗)‖2

= αλ
∑
vi∈V

βi‖∇Fi(w∗)‖2. (11)

According to Eq. (2) and Assumption 3, we have

E[
∑
vi∈Vk

βiηi∇Fi(w∗)] = αλ
∑
vi∈V

βi∇Fi(w∗)

= αλ∇(
∑
vi∈V

βiFi(w∗))

= αλ∇F (w∗) = 0. (12)

Similarly, it follows

E[
∑
vi∈Vk

βiηi∇Fi(wlik
)] = αλ

∑
vi∈V

βi∇F (wlik
). (13)

By [31], the L-smoothness of function Fi can also be
expressed as

‖∇Fi(wlik
) −∇Fi(w∗)‖2

≤ L〈∇Fi(wlik
) −∇Fi(w∗),wlik

− w∗〉. (14)

Furthermore, F is μ-strongly convex. Combining with
Eqs. (12)-(14), we have

E[
∑
vi∈Vk

βiηi‖∇Fi(wlik
) −∇Fi(w∗)‖2]

≤ αλL
∑
vi∈V

βi〈∇F (wlik
),wlik

− w∗〉

≤ αλL

μ

∑
vi∈V

βi‖∇F (wlik
)‖2. (15)

Then combining Eqs. (9)-(13) and (15), it follows

E[F (wk)] − F (w∗)

≤ (1 −
∑
vi∈Vk

βi)(F (wk−1) − F (w∗))

+
∑
vi∈Vk

βi(F (wlik
) − F (w∗))

−αλ
∑
vi∈V

βi‖∇F (wlik
)‖2 +

αλη̃L2

μ

∑
vi∈V

βi‖∇F (wlik
)‖2

+αλη̃L
∑
vi∈V

βi‖∇Fi(w∗)‖2. (16)

Due to the convex of F , we have

‖∇F (wlik
)‖2 = ‖∇F (wlik

) −∇F (w∗)‖2

≥ 2μ(F (wlik
) − F (w∗)). (17)
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Thus, we can obtain that

−αλ
∑
vi∈V

βi‖∇F (wli
k
)‖2 +

αλη̃L2

μ

∑
vi∈V

βi‖∇F (wli
k
)‖2

≤ −αλ(1 − η̃L2

μ
)

∑
vi∈Vk

βi‖∇F (wlik
)‖2

≤ −2αλ(μ− η̃L2)
∑
vi∈Vk

βi(F (wlik
) − F (w∗)). (18)

Then we take Eq. (18) into Eq. (16) and obtain that

E[F (wk)] − F (w∗)

≤ (1 −
∑
vi∈Vk

βi)(F (wk−1) − F (w∗))

+
∑
vi∈Vk

βi[1 − 2αλ(μ− η̃L2)](F (wlik
) − F (w∗))

+αλη̃L
∑
vi∈V

βi‖∇Fi(w∗)‖2. (19)

Let S(k) � E[F (wk)]−F (w∗). Then F (wk−1)−F (w∗) =
S(k−1) and F (wlik

)−F (w∗) = S(lik). The recursive relation
is transformed into

S(k) ≤ (1 −
∑
vi∈Vk

βi)

︸ ︷︷ ︸
xk

S(k − 1)

+
∑
vi∈Vk

βi[1 − 2αλ(μ− η̃L2)]︸ ︷︷ ︸
yk

i

S(lik)

+αλη̃L
∑
vi∈V

βi‖∇Fi(w∗)‖2

︸ ︷︷ ︸
zk

. (20)

Then, we can obtain that

θmax = max
k

θk = max
k

{xk +
∑
vi∈Vk

yik}

= max
k

{1 − 2αλ(μ− η̃L2)
∑
vi∈Vk

βi}

= 1 − 2αλβ̃(μ− η̃L2). (21)

According to Lemma 1, if αλβ̃(μ− η̃L2) ∈ (0, 1
2 ), then

E[F (wK)] − F (w∗) ≤ ρK(F (w0) − F (w∗)) + δ,

where ρ = [1 − 2αλβ̃(μ − η̃L2)]
1

1+τmax ∈ (0, 1) is
called the convergence factor, and represents the conver-
gence rate of the loss function in one round. δ =

η̃L

2β̃(μ−η̃L2)

∑
vi∈V βi‖∇Fi(w∗)‖2 called the residual error,

represents that the loss function can converge to a
δ-neighborhood of the optimal value.

C. Discussions

In this section, we can draw some meaningful corollaries
from Theorem 1.

Corollary 1: The residual error δ depends partly on the
data distribution. The greater the degree of data Non-IID
among workers, the larger the value of ‖∇Fi(w∗)‖2 for each
worker vi, and the higher residual error δ.

Corollary 2: Given IID data among workers,
‖∇Fi(w∗)‖2 = 0 for ∀vi ∈ V , and δ = 0. It means
that the global loss function will converge to the optimal
value with enough rounds.

Corollary 3: When the global learning rate λ is constant,
the value of η̃ decreases as the value of M increases (because
the learning rates among all workers will be more bal-
anced). In addition, β̃ increases as the value of M increases.
Therefore, the residual error δ can be effectively reduced by
increasing the value of M .

Corollary 4: The upper bound of staleness τmax decreases
as the value of M increases. e.g., if M = N , then τmax = 0.
Therefore, the convergence factor ρ decreases as M increases,
too.

Corollary 4 shows that we can decrease the convergence
factor ρ by increasing the number M of workers participating
in each global updating. However, it does not mean a short
convergence time, because the completion time of a single
round depends on the arrival time of the M th model. Conse-
quently, a larger value of M will result in a longer completion
time of a single round. Accordingly, it is a significant problem
to determine the proper value of M to achieve better training
performance.

IV. ALGORITHM DESCRIPTION

A. Using Convergence Bound to Convert Problem

Corollary 3 shows that the residual error δ decreases
with the increase of M . So, when M = 1, the value
of δ reaches the maximum, i.e., δ ≤ δmax =

η̃M=1L
2βmin(μ−η̃M=1L2)

∑
vi∈V βi‖∇Fi(w∗)‖2, where βmin =

minvi∈V{βi} = minvi∈V{Di}/D is the proportion of the data
size of worker with the smallest data size to the total amount of
data, and η̃M=1 is the maximum learning rate among workers
when M = 1.

According to Theorem 1, we obtain the convergence bound
of the global model after K rounds. To satisfy the constraint
in Eq. (7b), we make the upper bound of E[F (wK)]−F (w∗)
less than ε, i.e.,

E[F (wK)] − F (w∗) ≤ ρK(F (w0) − F (w∗)) + δ

≤ [1 − 2αλβ̃(μ− η̃L2)]
K

1+τmax (F (w0) − F (w∗)) + δmax

≤ ε.

We define that

ψ � 1 − 2αλβ̃(μ− η̃L2) ∈ (0, 1), (22)

then it holds that

K ≥ (1 + τmax) logψ φ, (23)

where the control parameter

φ � ε− δmax
F (w0) − F (w∗)

(24)

represents the target training accuracy. By Eq. (7c), we can
deduce that

K ≤ B

Mb
. (25)
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If the value of M is chosen such that (1 + τmax) logψ φ >
B
Mb , it means that FL system cannot reach the target training
loss under the communication budget. Otherwise, when we set
K = �(1 + τmax) logψ φ�, the value of

∑K
k=1 tk reaches the

minimum. To simplify the analysis, we regard

K ≈ (1 + τmax) logψ φ. (26)

Thus the new objective can be transformed as:

min
K∑
k=1

tk = Kt, (27)

where t is the average completion time per round. So we
convert the original problem P1 to the following optimization
problem:

(P2) : min t(1 + τmax) logψ φ (28a)

s.t. (1 + τmax) logψ φ ≤ B

Mb
(28b)

M ∈ {1, 2, . . . , N}. (28c)

Remark 1: The convergence rate depends on the conver-
gence factor ρ and the completion time of a single round,
independent of the residual error δ, which represents that the
loss function can converge to a δ-neighborhood of the optimal
value. Therefore, it is reasonable to expand the residual error
to the maximum δmax for facilitating the implementation of
Alg. 2.

B. Algorithm Description

The key challenge of the algorithm design is to estimate
the value of some parameters in the objective of P2. The
values of some parameters depend on the data distribution
among workers, such as μ and L, and we employ the method
in [32] for estimation. The values of other parameters are
determined by the time sequence of model arrivals, such as t,
τmax and η̃, and we propose an algorithm to estimate their
values as formally described in Alg. 2. First, we introduce
the concept of model preparation time to describe the edge
heterogeneity. Then we design a prediction process to estimate
the values of these parameters for each given value of M
(i.e., M = 1, 2, . . .N ). The optimal value of M is determined
to minimize the objective at last.

1) Model Preparation Time: It is defined as the average
duration from the parameter server distributes its global model
to worker vi to the next time it receives vi’s local model, i.e.,
the duration of model distribution, local model updating and
local model uploading. We assume that the full knowledge
about model preparation time P = {p1, p2, . . . pN} can be
obtained according to the parameter server’s previous mea-
surements. When the network environment is relatively stable,
the element values in P are expected to be stable and can
be easily estimated. When the edge environment is dynamic,
the element values in P change over time, even so, our
mechanism is still applicable by performing Alg. 2 in real-
time (detail in Section V-A).

Remark 2: Since the global updating on the parameter
server contains only linear operations, its duration is neg-
ligible compared with the model preparation time and can

be ignored [33]. For example, our evaluation on the testbed
shows that each global updating of the AlexNet model only
takes 0.03s, which is significantly less than the model prepa-
ration time (15s).

Algorithm 2 Parameter Estimation
Input: The set of model preparation time P , global learning

rate λ, communication budget B, staleness threshold τ0,
each worker’s data size Di, vi ∈ V

Output: The optimal M
1: Tmin = +∞
2: for each M ∈ {1, 2, . . . , N} do
3: for each vi ∈ V do
4: ri = pi, τi = 0, ci = 0
5: τmax = 0
6: for k ∈ {1, 2, . . . ,K∗} do
7: tk = r(M)

8: t =
�

0≤k′<k tk′
k

9: Vk = ∅

10: for each vi ∈ V do
11: if ri ≤ tk then
12: Vk = Vk ∪ {vi}
13: for each vi ∈ V do
14: τi = τi + 1
15: if vi ∈ Vk or τi > τ0 then
16: ri = pi, τi = 0, ci = ci + 1
17: else
18: ri = ri − tk
19: τmax = max{τmax, τi}
20: ctotal =

∑
vi∈V ci

21: for each vi ∈ V do
22: fi = ci

ctotal

23: ηi = λ
Nfi

24: η̃ = maxvi∈V{ηi}
25: β̃ =

∑
vi∈ṼM Di/D

26: K = (1 + τmax) logψ φ
27: if K > B

Mb then
28: continue
29: T = Kt
30: if T < Tmin then
31: Tmin = T
32: M � = M
33: M = M �

34: return M

2) A Prediction Process: The values of t, τmax and η̃
are determined by vector P and the value of M . Since
they are difficult to express explicitly in a mathematical
formula, we design a prediction process to estimate their
values (Lines 3-24). The main idea of the prediction process
is to simulate the process of the model arrivals and global
updating given different model preparation time pi ∈ P for
each M = 1, 2, . . . , N . The prediction process will run K∗

rounds.
Let ri denote the duration from the current time to the

arrival of worker vi’s model at the parameter server. Since the
parameter server is aware of all workers’ model preparation
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Fig. 2. Illustration of the prediction process when M = 2.

time P = {p1, p2, . . . pN} in advance, it can also estimate
the required time R = {r1, r2, . . . rN} for each model to
arrive and predict the arrival order of their local models. The
elements in R are rearranged in increasing order by r(1) ≤
r(2) ≤ . . . ≤ r(N), which represents their arrival order. The
elements in P are also rearranged as p(1) ≤ p(2) ≤ . . . ≤ p(N).

For each value of M , we first initialize the required arrival
time ri for each worker vi as its model preparation time pi.
The participation frequency ci of worker vi, vi’s staleness τi
and τmax are initialized as 0 (Lines 3-5).

Then we run the prediction process for K∗ rounds. The
completion time of round k is determined by the M th smallest
number in R, i.e., tk = r(M) (Line 7). Then the M models
whose required arrival time is less than tk are involved in
the set Vk (Lines 10-12). If vi is in set Vk or its staleness
exceeds the threshold τ0, its required arrival time ri is reset
to pi, its staleness τi is set to 0, and its participation frequency
ci increases by 1. Otherwise, ri is reduced by tk. During
this process, if the staleness of a model is greater than τmax,
it is truncated to τmax (Lines 13-19). After K∗ rounds, each
worker vi’s participation frequency ci is recorded and the
corresponding relative participation frequency fi is updated.
Then each worker vi’s learning rate ηi is obtained by Eq. (6),
and their maximum value η̃ is also derived (Lines 20-24).

To better illustrate the prediction process in our algorithm,
the diagram is shown in Fig. 2, with four workers v1 − v4
and a parameter server in the system, and the workers’ model
preparation time satisfies p1 < p2 < p3 < p4. Note that ri is
a time-varying value, and we mark each ri at the beginning
of the first and fifth rounds as examples in Fig. 2. Let M = 2,
i.e., after the parameter server receives the local models from
two workers, it performs global updating. At the beginning of
round 1, r1 = p1, r2 = p2, r3 = p3 and r4 = p4, respectively.
Since r1 and r2 are the two smallest among them, v1 and v2
participate in the global updating of round 1 and t1 = r(2) =
r2. Similarly, at the beginning of round 5, the expected time for
workers’ next arrival is r1 = p1, r2 = p2, r3 = p3−t3−t4, and
r4 = p4−t4, respectively. It is obvious that r3 < r1 < r2 < r4,
thus v3 and v1 participate in the global updating in round 5,
and t5 = r(2) = r1. Estimates of t, τmax and η̃ can be obtained
after multiple rounds of such prediction.

3) Determine the Optimal Value of M : After all parameters
are estimated, we calculate the number of expected rounds
K for each chosen M . If the communication budget is not
satisfied, the corresponding M is directly excluded (Lines 26-
28). Otherwise, the objective T = Kt is calculated for each M
that satisfies the communication budget. Finally, The optimal
M that minimizes the value of the objective is determined
(Lines 29-32).

Remark 3: Alg. 2 mainly determines the optimal value of
M so as to minimize the objective T = t(1 + τmax) logψ φ,
where ψ = 1−2αλβ̃(μ− η̃L2) and φ = (ε−δmax)/(F (w0)−
F (w∗)). However, the optimal parameter vector w∗ is hard
to be obtained in real scenarios. Obviously, the value of M
affects the values of t, τmax and ψ, but does not affect the
value of φ. Accordingly, the value of φ does not affect the
relative size of the objective T = t(1 + τmax) logψ φ =
t(1+τmax)

lgψ lg φ under different M . In fact, φ, also called the
target training accuracy, can be regarded as a manually
chosen control parameter. We can appropriately set φ ∈ (0, 1)
in Alg. 2, which is similar to the method in [32]. For example,
without loss of generality, we set φ as 0.05 in our experiments.

Remark 4: The choice of the rounds K∗ of the prediction
process is based on the following facts. 1) It is obvious that
when only one worker is chosen in each round, i.e., M = 1,
the prediction process needs the most number of rounds to
obtain stable parameters. 2) Our evaluation in Section VI-B
shows that the estimate of τmax needs much more rounds
than t. 3) the maximum staleness τmax corresponds to the
worker with the maximum model preparation time. Therefore,
we estimate the staleness of the worker with the largest model
preparation time P(N) when M = 1 as τ̂ = �∑vi∈V

P(N)

P(i)
�.

Our evaluation shows that predicting K∗ ≈ τ̂ rounds can
obtain stable estimates of t and τmax, so it is more than
enough to set K∗ = 10τ̂ .

Remark 5: As shown in our evaluation in Section VI-B,
the prediction process in Alg. 2 takes a very short time,
which is negligible compared with the model training and
transmission time. Therefore, our algorithm is practical.

V. EXTENSION

A. Extending to Dynamic Scenarios

In the previous sections, we assume that the network envi-
ronment is relatively stable, such that the model preparation
time pi of each worker vi is expected to be stable and a fixed
number M of workers participating in the global updating
is determined. However, due to the mobility of workers and
uncertain network environment, their model preparation time
may be varied over time. To this end, we propose the dynamic
semi-asynchronous FL mechanism, in which the varied num-
ber of participating workers is adopted. The dynamic FedSA
mechanism is formally described in Alg. 3.

In order to cope with the time-varying model preparation
time caused by dynamic scenarios (e.g., worker mobility,
network uncertainty), we log each worker’s historical model
preparation time and determine the number of participating
workers in the next round using the average of their his-
torical model preparation time. In addition to the updating
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Algorithm 3 Dynamic FedSA
1: k = 0
2: for each vi ∈ V do
3: pi = 0, p̃i = 0,Qi = ∅

4: while F (wk) − F (w∗) > ε do
5: Processing at Each Worker vi
6: if Receive wk from the server then
7: Update local model by Eq. (3)
8: Upload local model wi

k+1

9: Processing at the Parameter Server
10: Updating Thread:
11: Vk = ∅

12: while |Vk| < Mk do
13: Receive local model xik from worker vi
14: Vk = Vk ∪ {vi}
15: Update global model by Eq. (5)
16: for each vi ∈ V do
17: if vi ∈ Vk or τ ik > τ0 then
18: Distribute updated model wk and learning rate ηi
19: Logging Thread:
20: Measure the completion time tk of round k
21: for each vi ∈ V do
22: p̃i = p̃i + tk
23: if vi ∈ Vk then
24: EnQueue(Qi, p̃i), pi =

�
x∈Qi

x

|Qi|
25: p̃i = 0
26: Use P = {p1, p2, . . . , pN} to estimate Mk+1 by Alg. 2
27: k = k + 1
28: Return the final model and loss function

thread, the parameter server also maintains a logging thread
(Lines 19-26), which uses a variable p̃i to record the duration
from worker vi last participated in the global updating to the
current time. The value of p̃i increases with time (Line 22).
Once worker vi participates in the global updating, p̃i is logged
and added to a queue Qi. The parameter server calculates the

average of all elements in the queue Qi, i.e., pi =
�

x∈Qi
x

|Qi|
as the estimated model preparation time of vi (Line 24).
Then, p̃i is reset to 0 (Line 25). The parameter server uses
all workers’ model preparation time P = {p1, p2, . . . pN} to
estimate the optimal number of participating workers for the
next round by Alg. 2 (Line 26).

B. Extending to Multiple Learning Tasks Scenarios

1) Problem Formulation: In this section, we consider a
more practical scenario, where multiple learning tasks are
performed simultaneously in the FL system.

Assume that there are L multiple learning tasks S =
{s1, s2, . . . , sL} in the FL system, and bj is the amount
of transmitted data for one time of sj’s model exchanging
between a worker and the parameter server. In order to
extend our algorithm to multiple learning tasks scenario,
the parameter server needs to maintain a set of vectors Pj =
{p1,j, p2,j , . . . , pN,j} for each task sj ∈ S, where pi,j is the
model preparation time of worker vi for task sj . The function
of each Pj is similar to that of P in Section IV-B.

Algorithm 4 Algorithm for Multi-Task Scenario
Input: Sets of the model preparation time Pj , ∀sj ∈ S,

communication budget B
Output: Final Mj, ∀sj ∈ S
1: for each sj ∈ S do
2: Obtain initial Mj by Alg. 2
3: Estimate Bj and Tj according to Mj

4: Sc = ∅

5: while
∑
sj∈S Bj > B do

6: sj = argminsj′∈S\Sc
{Tj′}

7: Mj = Mj + 1
8: Update Bj and Tj according to Mj

9: if Mj = N then
10: Sc = Sc ∪ {sj}
11: return Mj, ∀sj ∈ S

Our problem is to determine the number Mj of workers
participating in the global updating for each task sj , so as
to minimize the maximum training time of all tasks given
communication budget. Let Fj(wj) denote the global loss
function of task sj , and tj,k denote the completion time of task
sj in round k. We formulate our multi-task learning problem
as follows:

(P3) : min max
sj∈S

Kj∑
k=1

tj,k (29a)

s.t. Fj(wj,Kj ) ≤ Fj(wj,∗) + ε ∀sj ∈ S (29b)∑
sj∈S

KjMjbj ≤ B (29c)

Mj ∈ {1, 2, . . . , N} ∀sj ∈ S. (29d)

The first set of inequalities (29b) represents that the global
model reaches convergence after Kj rounds for each task sj .
The second inequality (29c) represents that the communication
consumption of all tasks does not exceed a communication
budget.

2) Algorithm Description: Our multi-task scenario algo-
rithm is formally described in Alg. 4.

First, we obtain the optimalMj for each task sj ∈ S without
considering the communication budget by Alg. 2. In terms of
Alg. 2, the communication consumption Bj = KjMjbj and
the total training time Tj = Kjtj can also be estimated, where
Kj is the number of training rounds and tj is the single round
training time of sj (Lines 1-3). Then we select the task sj
with the minimum training time, and gradually increase the
value of Mj to reduce its communication consumption (along
with the increase of training time) (Lines 5-8). If the value of
Mj has been increased to N , sj will never be selected again
(Lines 9-10). This process continues until the whole system
satisfies the communication budget.

VI. PERFORMANCE EVALUATION

A. System Setup

We implement an experimental testbed comprising of one
parameter server and 10 workers (labeled from v1 to v10) to
evaluate the effectiveness of our proposed mechanism. Fig. 3
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Fig. 3. Hardware devices of our testbed. Left: Parameter Server; Right: TX2.

TABLE III

MAIN PERFORMANCE MODES OF TX2

shows the hardware devices of our testbed. The parameter
server is equipped with an 8-core Intel(R) Xeon(R) CPU
(E5-2620v4) and 4 NVIDIA GeForce RTX 2080Ti GPUs
with 11GB RAM. We use ten NVIDIA Jetson TX2 devices
as workers, each of which has an NVIDIA Pascal GPU
with 256 CUDA capable cores and a CPU cluster consist-
ing of a 2-core Denver2 and a 4-core ARM CortexA57.
Our experiments are based on Ubuntu 18.04, CUDA v10.0,
cuDNN v7.5.0.

1) Implementation of Edge Heterogeneity: The Jetson
TX2 device can be powered by different performance modes,
which are listed in Table III. Specifically, modes 0 and 2 work
with 2 Denver CPUs, a quad-core A57 CPU and a pascal
architecture GPU, while modes 1 and 3 work with only an
A57 CPU and a GPU. The frequencies of Denver CPUs are
2.0 GHz and 1.4 GHz for modes 0 and 2, respectively. The
frequencies of A57 CPUs are 2.0 GHz, 1.2 GHz, 1.4 GHz and
2.0 GHz for modes 0, 1, 2 and 3, respectively. The frequencies
of GPUs are 1.30 GHz, 0.85 GHz, 1.12 GHz and 1.12 GHz
for modes 0, 1, 2 and 3, respectively. To realize the device
heterogeneity, we set the TX2 devices in different modes,
at different distances from the parameter server, so that their
model preparation time is different.

2) Models and Datasets: The experiments are conducted
with three classical models (i.e., LR [34], CNN [35]
and AlexNet [36]) and on two datasets (MNIST [37]
and CIFAR-10 [38]). LR is trained on MNIST, consisting
of 60,000 handwritten digits for training and 10,000 for
the test. AlexNet is trained on CIFAR-10, which includes
50,000 images for training and 10,000 for the test, and has ten
different types of objects. CNN is trained on both MNIST and
CIFAR-10. The detailed CNN network architectures. 1) For

MNIST: The CNN consists of two 5 × 5 convolution layers
(20, 50 channels), each of which is followed by 2 × 2 max
pooling, two fully-connected layers with 800 and 500 units,
and a softmax layer with 10 units. 2) For CIFAR-10: The CNN
consists of two 5 × 5 convolution layers (32, 64 channels),
each of which is also followed by 2 × 2 max pooling, two
fully-connected layers with 1600 and 512 units, and a softmax
layer with 10 units. We adopt the same mini-batch size
(i.e., 64) for all workers.

For our FedSA mechanism, the global learning rate is set as
λ = 0.01 for CNN and LR on MNIST, and λ = 0.05 for CNN
and AlexNet on CIFAR-10. Then the learning rate ηi of each
vi is set according to Eq. (6). The weighted average of the
learning rates of all workers satisfies η =

∑
vi∈V fiηi = λ.

In addition, the learning rates of all workers in all benchmarks
are set to η.

3) Data Partition: To analyze training performance under
different data distributions, we study three ways of partitioning
the MNIST and CIFAR-10 data among workers: 1) IID. All
data in MNIST (or CIFAR-10) are shuffled, and then evenly
partitioned into 10 subsets, one for each worker. 2) Non-
IID. All data in the dataset are divided into two groups
according to the parity of the labels. Then the data in the odd
group are distributed evenly to workers v1-v5, and the data
in the even group are distributed evenly to workers v6-v10.
3) Non-IID-0.9. 10% of the data in the dataset are distributed
to 10 workers as in IID, and the other 90% of the data are
distributed to workers as in Non-IID.

4) Benchmarks and Performance Metrics: We adopt four
typical mechanisms as benchmarks for performance compari-
son. Two of them belong to the synchronous FL mechanisms
and are variants of FedAvg [9]. The first is called FedAvg-
full (FedAF), in which all workers participate in the global
updating in each round. The second is called FedAvg-partial
(FedAP), in which the parameter server selects partial workers
randomly to participate in the global updating in each round.
The third one, called FedAsync (FedASY) [19], is an asyn-
chronous FL mechanism, where the parameter server performs
the global updating as soon as it receives a local model
from any worker. The fourth one is a semi-asynchronous FL
mechanism, called SAFA [22]. Since FedAP and SAFA do
not specify the number of workers participating in the global
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Fig. 4. Value of τmax vs. Value of K∗.

Fig. 5. Value of t vs. Value of K∗.

TABLE IV

THE VALUE OF τ̂ IN RELATION TO γ AND N

updating in each round, we naturally set it to half of the total
number (i.e., 5) of workers in our experiments.

To evaluate the training performance, we adopt three perfor-
mance metrics. 1) Loss Function reflects the training process
of the model and whether convergence has been achieved.
2) Accuracy is the most common performance metric in
classification problems, which is defined as the proportion of
right data classified by the model to all test data. 3) Training
Time is adopted to measure the training speed.

B. Parameter Estimation

1) Prediction Process: To know the specific prediction
rounds K∗ to obtain stable parameters (e.g., τmax and t) in
Alg. 2, we simulate the different numbers of workers N with
different model preparation time P in the system. Let γ =
p(N)

p(1)
be the quotient of the largest and the smallest elements

in P . All the elements in P are evenly distributed between
p(1) and p(N). As shown in Figs. 4 and 5, the values of τmax
and t tend to be stable after a certain rounds, and predicting
τmax takes more number of rounds than predicting t. Besides,
The smaller the value of M is, the more rounds it needs.

The value of τ̂ is calculated by τ̂ = �∑vi∈V
P(N)

P(i)
�

according to Section IV-B. We calculate the value of τ̂ under
different γ and N as shown in Table IV. The test results are
shown in Figs. 6 (γ = 10) and 7 (N = 10). It indicates that
the actual test result of appropriate prediction rounds K∗ is

Fig. 6. Value of τmax vs. Value of K∗ when γ = 10.

Fig. 7. Value of τmax vs. Value of K∗ when N = 10.

Fig. 8. Estimated completion time T vs. M . (a) IID; (b) Non-IID;
(c) Non-IID-0.9.

approximately equal to the calculated τ̂ , i.e., K∗ ≈ τ̂ . For
example, when N = 10, and γ = 50 in Fig. 7, the value of
τmax stays at 69 after the 70th round, while our calculated τ̂
is 72 in Table IV. Although the value of τmax may increase
slightly in a few rounds after the τ̂ th round, setting K∗ = 10τ̂
is more than enough in Alg. 2.

2) Estimation of M Under Different Data Distributions:
In this section, we estimate the optimal value of M under
different data distributions in FedSA.

We calculate the value of our objective T = t(1 + τmax)
logψ φ by Alg. 2 when the value of M is set as 1 to N . Without
loss of generality, we set φ = 0.05 in our experiments. The
results are shown in Fig. 8. Fig. 8(a) shows that, under IID
data distribution, it takes the shortest time to achieve target
training performance when M = 1, and more time is required
with the larger value of M . Fig. 8(b) shows that when the data
distribution is Non-IID, the optimal value of M is predicted
as 7-9. Fig. 8(c) shows that when the data distribution is Non-
IID-0.9, the optimal value of M is predicted as 3-4.

Besides, the total execution time of the prediction process
and the estimation of M is 0.11s when N = 10, and 13.66s
when N = 100, which is negligible compared with the
massive amounts of model training time.
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Fig. 9. The influence of M (LR on MNIST, IID). Left: Loss; Right: Accuracy.

Fig. 10. The influence of M (LR on MNIST, Non-IID). Left: Loss; Right:
Accuracy.

Fig. 11. The influence of M (LR on MNIST, Non-IID-0.9). Left: Loss;
Right: Accuracy.

3) Verification for the Optimal M : To verify the effec-
tiveness of the previous parameter estimation, we conduct
experiments on the testbed to explore the influence of M on
model training performance under different data distributions.

We train LR on MNIST for 5000s under different data
distributions as shown in Figs. 9-11. Fig. 9 shows that when
the data distribution is IID, it takes more time to achieve
convergence with the larger value of M . For example, when M
is set as 1, 3, 5, 8 and 10, after 5000s of training, the accuracy
is 93.13%, 92.98%, 92.75%, 92.32% and 91.18%, respec-
tively. The time required to reach 91% accuracy is 2489s,
2680s, 2862s, 3381s and 3903s, respectively. The situation is
complicated when the data distribution is Non-IID. As shown
in Fig. 10, from the overall trend, loss decreases and accuracy
increases with the increase of training time. However, when M
is set as 1, 3 and 5, loss and accuracy curves jitter in different
degrees. For example, the accuracy jitters between 82% and
90% for M = 1, 3 and 5 after 5000s of training. On the
other hand, when M is set as 8 and 10, the accuracy is stable
over 89.5% and 89.1%, respectively. When M is set as 1, 3, 5,
8 and 10, the time required to stabilize above 80% accuracy is
4961s, 4908s, 3272s, 740s and 905s, respectively. The results

Fig. 12. The influence of M (IID). Left: Loss; Right: Accuracy.

Fig. 13. The influence of M (Non-IID). Left: Loss; Right: Accuracy.

for Non-IID-0.9 are shown in Fig. 11, when M is set as 1, 3,
5, 8 and 10, the time required to stabilize above 88% accuracy
is 4598s, 2489s, 2625s, 2739s and 2896s, respectively.

Figs. 9-11 show that the experimental results of training LR
can match with the theoretical convergence bound when the
loss function is convex, and the determination of the optimal
M is effective in Alg. 2. To verify the effectiveness of Alg. 2
when the loss function is non-convex, we further training CNN
on MNIST under different data distributions. Figs. 12-14 show
that Alg. 2 can still determine the optimal M when the loss
function does not satisfy the convex assumption. For example,
as shown in Fig. 13, when the data distribution is Non-IID,
the accuracy jitters between 90% and 96% for M = 1, 3 and
5 after 5000s of training. On the other hand, when M is set
as 8 and 10, the accuracy is stable over 95.39% and 94.63%,
respectively. When M is set as 1, 3, 5, 8 and 10, the time
required to stabilize above 90% accuracy is 4961s, 4908s,
3272s, 1524s and 1897s, respectively.

Figs. 9-14 show that the jitter can be reduced (i.e., the resid-
ual error δ in Section III is decreased) with the increasing value
of M . At the same time, the convergence rate is different given
different M under different data distribution, which is jointly
determined by the convergence factor ρ and the completion
time of a single round. In fact, both the convergence rate
and jitter degree together determine the training performance.
The evaluation results in Fig.4-14 show that our algorithm can
estimate the optimal value of M to minimize the training time
while achieving target training performance on the datasets
with different degrees of Non-IID.

C. Evaluation Results

1) Training Performance Comparison: In this section,
we compare the benchmarks with our FedSA mechanism by
training the models for 5000s on different datasets.
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Fig. 14. The influence of M (Non-IID-0.9). Left: Loss; Right: Accuracy.

Fig. 15. Loss/Accuracy vs. Time (LR on MNIST, IID). Left: Loss; Right:
Accuracy.

Fig. 16. Loss/Accuracy vs. Time (CNN on MNIST, IID). Left: Loss; Right:
Accuracy.

Fig. 17. Loss/Accuracy vs. Time (CNN on CIFAR-10, IID). Left: Loss;
Right: Accuracy.

We observe that FedSA always achieves better training
performance than FedAF, FedAP, FedASY and SAFA, but the
degree of performance varies with different datasets and data
distributions.

Figs. 15-18 show that, when the data distribution is IID,
the training performance of FedSA is a little worse than that
of FedASY at the beginning, but gradually catches up with
and exceeds that of FedASY as time goes on because of the
adaptive learning rate (Section VI-C.5). Besides, the training

Fig. 18. Loss/Accuracy vs. Time (AlexNet on CIFAR-10, IID). Left: Loss;
Right: Accuracy.

Fig. 19. Loss/Accuracy vs. Time (LR on MNIST, Non-IID). Left: Loss;
Right: Accuracy.

Fig. 20. Loss/Accuracy vs. Time (CNN on MNIST, Non-IID). Left: Loss;
Right: Accuracy.

performance of FedSA can work better than the other three
mechanisms. For example, as shown in Fig. 16, after 5000s
of training, the accuracy of FedSA, FedASY, SAFA, FedAF
and FedAP is 98.25%, 98.13%, 97.71%, 97.55% and 97.48%,
respectively. The time required to reach 97% accuracy is
1840s, 2612s, 3359s, 3894s and 3842s, respectively. FedSA
reduces training time by about 29.56%, 45.22%, 52.75% and
52.11% compared to FedASY, SAFA, FedAF and FedAP.

In addition, when the data distribution is Non-IID, the per-
formance of different mechanisms is very complicated.
Figs. 19-22 show that, FedSA and FedAF jitter a little. The
training performance of FedAF and SAFA is worse than that
of FedSA, but the degree is diverse across different training
models on different datasets. The performance of FedAP and
FedASY is not satisfying that they cannot even converge
within the limited training time. For example, as shown
in Fig. 20, after 5000s of training, the accuracy of FedSA,
FedAF, SAFA, FedASY, and FedAP is 95.39%, 94.64%,
91.31%, 76.61% and 60.62%, respectively. The time required
to reach 90% accuracy is 1520s, 1912s and 3950s for FedSA,
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Fig. 21. Loss/Accuracy vs. Time (CNN on CIFAR-10, Non-IID). Left: Loss;
Right: Accuracy.

Fig. 22. Loss/Accuracy vs. Time (AlexNet on CIFAR-10, Non-IID). Left:
Loss; Right: Accuracy.

FedAF and SAFA, respectively. FedSA reduces training time
by about 20.50% and 61.52% compared to FedAF and SAFA,
respectively. However, FedASY and FedAP fail to converge
given the time constraint. It indicates that FedASY and
FedAP are more sensitive to data distribution. For LR on
MNIST, CNN on CIFAR-10 and AlexNet on CIFAR-10,
FedSA reduces the training time by about 10.71%, 18.92% and
21.33% compared to FedAF as shown in Figs. 19, 21 and 22.

When the data distribution is Non-IID-0.9, all mechanisms
jitter smaller compared to the case of Non-IID. The reason lies
in that as long as workers have a small amount of data (relative
to the total amount of data) uniformly sampled from the overall
distribution, the performance of model training on Non-IID
data can be greatly improved [10]. However, the performance
of FedAP and FedASY is still not satisfying. For example,
as shown in Fig. 24, after 5000s of training, the accuracy
of FedSA, FedAF, SAFA, FedASY, and FedAP is 96.49%,
96.17%, 94.21%, 92.51% and 71.42%, respectively. The time
required to reach 92% accuracy is 1389s, 1650s, 2429s and
4798s for FedSA, FedAF, SAFA and FedASY, respectively.
FedSA reduces training time by about 15.81%, 42.81% and
71.05% compared to FedAF, SAFA and FedASY.

More detailed training performance of CNN on MNIST
is listed in Table V. When the data distribution is IID, our
algorithm can work better than FedAF, FedAP and SAFA.
Besides, the performance gap between FedSA and FedASY
is widening as the target accuracy gets higher and higher.
For example, to reach 98% accuracy, FedSA reduces training
time by about 16.41%, 42.84%, 42.03% and 35.87% compared
to FedASY, FedAF, FedAP and SAFA, respectively. When
the data distribution is Non-IID, FedASY and FedAP cannot
converge to over 90% accuracy. FedSA reduces training time

Fig. 23. Loss/Accuracy vs. Time (LR on MNIST, Non-IID-0.9). Left: Loss;
Right: Accuracy.

Fig. 24. Loss/Accuracy vs. Time (CNN on MNIST, Non-IID-0.9). Left: Loss;
Right: Accuracy.

TABLE V

TRAINING TIME REQUIRED TO ACHIEVE TARGET ACCURACY

by 15-30% compared to FedAF and 40%-65% compared
to SAFA. When the data distribution is Non-IID-0.9, our
algorithm can work better than the benchmarks. For example,
to reach 95% accuracy, FedSA reduces training time by about
55.88%, 16.52%, 78.91% and 45.51% compared to FedASY,
FedAF, FedAP and SAFA, respectively.

2) The Impact of Communication Budgets: Table VI shows
the impact of adjusting the communication budget B for CNN
on MNIST. The amount of the CNN model data transmitted
each time between a worker and the parameter server is
1.64MB. When the data distribution is IID, we set the target
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Fig. 25. Loss/Accuracy vs. Time (CNN on CIFAR-10, Non-IID-0.9). Left:
Loss; Right: Accuracy.

Fig. 26. Loss/Accuracy vs. Time (AlexNet on CIFAR-10, Non-IID-0.9). Left:
Loss; Right: Accuracy.

TABLE VI

THE TRAINING TIME UNDER DIFFERENT COMMUNICATION BUDGETS

training accuracy as 95% and observe the training time. When
the data distribution is Non-IID, we set the target training accu-
racy as 90%. As shown in Table VI, when the communication
budget is large enough, the optimal M for FedSA is set as 1 in
the case of IID data. The value of optimalM increases with the
decrease of the communication budget. This is because that,
the smaller M is, the more communication resource it requires
to achieve the same accuracy. When the communication budget
is small, a small value of M makes the constraint Eq. (7c)
not satisfied. In the case of Non-IID, the optimal M is first
estimated as described in VI-B.2. When the choice does not
satisfy the communication budget, the value of M will also
increase as in the case of IID data.

3) Influence of Adaptive Learning Rate: In this section,
we verify the benefits of the adaptive learning rate described in
Section II-D. Figs. 27 and 28 show the comparison of training
performance between FedSA (M = 1) (with adaptive learning
rate) and FedASY (without adaptive learning rate) with CNN
on MNIST. Fig. 27 shows that when the data distribution is
IID, the performance of FedSA is a little worse than FedASY

Fig. 27. Influence of adaptive learning rate (IID). Left: Loss; Right: Accuracy.

Fig. 28. Influence of adaptive learning rate (Non-IID). Left: Loss; Right:
Accuracy.

Fig. 29. Influence of staleness threshold (IID).

at the beginning, but after 3000s of training, its accuracy
catches up with or even exceeds that of FedASY. For example,
after 5000s of training, the accuracy of FedSA and FedASY is
98.25% and 98.14%, respectively. Fig. 28 shows that by using
the adaptive learning rate, FedSA can greatly reduce the jitter
of the training curve and improve training performance when
the data distribution is Non-IID. For example, after 5000s of
training, the accuracy of FedSA varies from 92%-96%, while
the accuracy of FedASY varies from 75%-90%.

4) Influence of Staleness Threshold: In this section,
we observe the effect of the staleness threshold τ0 on training
performance and communication consumption. Figs. 29-31
show the comparison of training accuracy of CNN on MNIST
when staleness threshold τ0 is set to 3, 5, 7 and infinity
(i.e., no forced synchronization of stale models), respectively.
As shown in Fig. 29, when the data is IID, the accuracy
increases with the decreasing of staleness threshold τ0 under
the same training time. For example, after 5000s of training,
the accuracy will reach 98.41%, 98.35%, 98.25% and 98.14%
when τ0 is set to 3, 5, 7 and infinity, respectively. However, τ0

will not significantly impact the accuracy when the data distri-
bution is Non-IID or Non-IID-0.9. For example, the accuracy
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Fig. 30. Influence of staleness threshold (Non-IID).

Fig. 31. Influence of staleness threshold (Non-IID-0.9).

Fig. 32. Transmission Data vs. Staleness Threshold τ0.

jitters between 90% and 95% for all values of τ0 in Fig. 30.
That is because forcing slow workers to synchronize may
cause the global model more biased towards the local models
that participate in the global updating more frequently, which
offsets the beneficial effect of τ0 on bounding the staleness.
Fig. 32 shows the amount of transmission data when the value
of τ0 ranges from 0 to 10 under different data distributions.
As shown in this figure, when the data distribution is Non-
IID, the amount of transmission data increases as the value
of τ0 decreases. For example, when τ0 = 10, it requires
transmission data of 7.67GB to reach 95% accuracy, while
τ0 is 0, it requires 17.06GB. When the data distribution is
IID, it minimizes the amount of transmission data with the
target accuracy requirement by setting τ0 to 4. For example,
when τ0 = 4, it consumes transmission data of 6.79GB to
reach 99% accuracy, while 10.70GB when τ0 = 0 and 8.61GB
when τ0 = 10.

5) Dynamic Scenario: In this section, we train CNN on
MNIST to verify that our FedSA can still work well in the
dynamic scenario by dynamically determining the optimal
value of M . In order to realize the dynamic scenario on our
testbed, we take the trained local model on worker vi into
the cache for a period of time κpi before it is uploaded to
the parameter server, where κ is a random value uniformly

Fig. 33. M vs. Time.

Fig. 34. Accuracy in dynamic scenario (IID).

Fig. 35. Accuracy in dynamic scenario (Non-IID).

Fig. 36. Accuracy in dynamic scenario (Non-IID-0.9).

sampled from [0,2], and pi is the current model preparation
time of vi.

As shown in Fig. 33, the optimal value of M is changed
under different data distributions. For example, the optimal
value of M is 1 under IID data distribution. While under the
Non-IID data distribution, the optimal value of M fluctuates
between 5 and 10. When the data distribution is Non-IID-0.9,
the optimal value of M fluctuates between 1 and 6. Fur-
thermore, we compare FedSA with other benchmarks in the
dynamic scenario in Figs. 34-36. As shown in these figures,
the training performance of FedSA is better than the other
mechanisms under different distributions.

6) Multi-Learning Tasks Scenario: In this section, we eval-
uate the performance of three learning tasks simultaneously
existing in the system with total communication budgets,
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TABLE VII

THE MAXIMUM TRAINING TIME FOR MULTI-TASK SCENARIO UNDER DIFFERENT COMMUNICATION BUDGETS

including LR on MNIST (s1, 2.56 MB), CNN on MNIST
(s2, 1.64MB) and CNN on CIFAR-10 (s3, 3.35MB). Since the
training time for different models to achieve the same accuracy
is diverse on different datasets, for the sake of comparison,
we refer to the results in section VI-C.1, and take the accuracy
after 3000s of training as the target training accuracy of the
three tasks in this section, i.e., when the data distribution is
IID, the target training accuracy of three tasks s1, s2 and s3
is set as 91.55%, 97.42% and 64.65%, respectively. When the
data distribution is Non-IID, their target training accuracy is
set as 87.42%, 93.09% and 54.46%, respectively.

The results are shown in Table VII. When the data dis-
tribution is IID, as the communication budget drops from
5000MB to 2500MB, the Mj chosen by each task sj gradually
increases from 1 to 10 in FedSA, and the training time
also increases gradually. When the communication budget
is large enough, FedSA requires a little less training time
than FedASY, but much less time than the two FedAvg
mechanisms. For example, when the communication budget
is 5000 MB, the training time of FedSA, FedASY, SAFA,
FedAF and FedAP is 3000s, 3210s, 3458s, 4910s and 4722s,
respectively. When the communication budget gets smaller,
FedASY, SAFA and FedAP cannot reach the target accuracy,
the training time of FedSA gradually increases to close to
FedAF.

When the data distribution is Non-IID, FedASY, SAFA
and FedAP cannot even converge. When the communication
budget is large enough, FedSA requires much less training
time than FedAF does. As the communication budget drops,
the Mj chosen by each task sj increases from 8 to 10 in
FedSA.

7) Summary of Evaluation Results: We conclude the eval-
uation results from Figs. 15-36 and Tables V-VII as follows.
Figs. 15-26 and Tables V show that our FedSA mechanism is
more efficient compared with benchmarks under different data
distributions. Table VI shows that FedSA can estimate the opti-
mal M given different communication budgets. Figs. 27-28
show that our proposed adaptive learning rate can improve the
performance on both IID and Non-IID data. Figs. 29-32 show
the effect of staleness threshold on training performance and
communication consumption. Figs. 33-36 show the effective-
ness of the dynamic FedSA mechanism. Table VII shows that

our mechanism and algorithms are practical in the multiple
learning tasks scenario.

VII. CONCLUSION

In this paper, we propose FedSA, a novel semi-
asynchronous federated learning mechanism for heterogeneous
edge computing. We theoretically prove the convergence of
FedSA. We then propose an efficient algorithm to determine
the optimal number of participating workers in each round
given communication budget to minimize the training time.
We further extend our algorithm to the dynamic and multiple
learning tasks scenarios in practice. The experimental results
indicate the effectiveness of our proposed mechanism on the
datasets with different degrees of Non-IID.
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