
IEEE TRANSACTIONS ON BIG DATA, VOL., NO., SEP. 2023 1

FRACTAL: Data-aware Clustering and Communication
Optimization for Decentralized Federated Learning

Qianpiao Ma, Jianchun Liu, Hongli Xu, Member, IEEE, Qingmin Jia, Renchao Xie, Member, IEEE

Abstract—Decentralized federated learning (DFL) is a promis-
ing technique to enable distributed machine learning over edge n-
odes without relying on a centralized parameter server. However,
existing DFL network topologies, such as fully connected, partial-
ly connected, or lower-tier hierarchical topology often struggle
to effectively address the unique challenges presented by edge
networks, including edge heterogeneity, communication resource
constraint, and data Non-IID. In order to tackle these challenges,
we propose a data-aware clustering algorithm, called FRACTAL,
to construct a multi-tier hierarchical topology in a bottom-
up manner taking into consideration both data distribution
and communication efficiency for DFL. We theoretically explore
the quantitative relationship between the convergence bound of
multi-tier FL and the data distribution among each-tier servers.
To further improve communication efficiency and address edge
heterogeneity, we deploy a time-sharing communication schedul-
ing algorithm within each fractal unit (the basic structure in
FRACTAL consisting of multiple nodes and an aggregator), called
magic mirror method (MMM), to determine the optimal order of
model distributing and uploading for nodes. We conduct extensive
experiments on the classical models and datasets to evaluate the
performance of FRACTAL, and the results show that FRACTAL
can significantly accelerate the DFL model training by 48.6%-
72.3% compared with the state-of-the-art solutions.

Index Terms—Decentralized federated learning, Clustering,
Non-IID, Time-sharing Scheduling, Heterogeneity.

I. INTRODUCTION

INTERNET of Things (IoT) has become a prevalent tech-
nology that connects physical devices and generates mas-

sive amounts of data every day [1]–[3]. However, sending
these data to the remote cloud for processing or training poses
several challenges, such as privacy leakage, bandwidth con-
sumption, and latency. Therefore, edge computing has emerged
as a promising solution that enables local data processing
at the network edge, leveraging the computation capabilities
of edge nodes [4]. Moreover, edge computing facilitates the
implementation of federated learning (FL), which is a dis-
tributed machine learning paradigm that allows edge nodes

This work was supported in part by National Natural Science Foundation of
China (No. 92267301), Jiangning Baijia Lake Plan Program (No.74072203-3).

Q. Ma and Q. Jia are with the Purple Mountain Laboratories, Nan-
jing, Jiangsu, China, 211111. E-mail: maqianpiao@pmlabs.com.cn, jiaqing-
min@pmlabs.com.cn

J. Liu and H. Xu are with the School of Computer Science and Technol-
ogy, University of Science and Technology of China, Hefei, Anhui, China,
230027, and also with Suzhou Institute for Advanced Study, University of
Science and Technology of China, Suzhou, Jiangsu, China, 215123. E-mail:
jcliu17@ustc.edu.cn, xuhongli@ustc.edu.cn

R. Xie is with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications, Beijing,
China, 100083, and also with the Purple Mountain Laboratories, Nanjing,
Jiangsu, China, 211111. E-mail: Renchao_xie@bupt.edu.cn

(also called workers) to collaboratively train a global model
without sharing their local data [5]–[7].

FL can be categorized into two architectures: centralized
and decentralized. In centralized federated learning (CFL) [8]
[9], there is a centralized parameter server that coordinates the
model training among workers. Each worker performs local
updates on its own data and uploads its local model to the
parameter server. The parameter server then aggregates the
local models into a global model and distributes it back to the
workers. However, the parameter server easy becomes system
bottleneck in CFL since the it may suffer heavy communica-
tion overhead, leading to poor scalability [10]. To overcome
the limitation in CFL, decentralized federated learning (DFL)
has been proposed to eliminate the need for a parameter server
and enable direct model synchronization between neighboring
workers. DFL can achieve better scalability and robustness
than CFL, , but it also faces more challenges on mobile edge
networks:

• Edge Heterogeneity: In DFL, each worker need to
communicate with each other directly, without the co-
ordination of a central parameter server. This means
that they have to cope with the heterogeneity of their
neighbors, which may vary in terms of location, data
size, computation power, and network quality [11]. This
makes the model synchronization in DFL more complex
and inefficient than in CFL with a centralized parameter
server to coordinate model updating.

• Communication Resource Constraint: On one hand,
since the absence of the parameter server, DFL typically
require more training rounds to converge than CFL. On
the other hand, each worker sends model to multiple
workers in each round in DFL rather than sending them
to a single server. Therefore, DFL usually consumes more
communication resource than CFL [12].

• Non-IID Data: The data among workers is of-
ten non-independent-and-identically-distributed (Non-
IID) [8] due to local data collection, which can signif-
icantly degrade FL performance [13]. This challenge is
more pronounced in DFL, since workers may have less
data diversity than the parameter server in CFL, which
can obtain model trained from all workers’ data.

Network topology describes the organization and communi-
cation of workers, affecting the model convergence, transmis-
sion, robustness of DFL significantly. Three types of network
topologies are commonly used in DFL: fully connected, par-
tially connected, and hierarchical clustering [14].

In fully connected topology [15] [16], each worker ex-

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 2

changes its model with all other workers. This topology pos-
sesses robustness against worker or link failures, maintaining
network operability despite disruptions. However, the addition
of a new worker mandates the creation of links with all
other workers, potentially causing substantial communication
overhead [16]. To mitigate communication overhead, some
DFL solutions employ a partially connected topology for mod-
el transmission, e.g., by constructing subgraphs with sparse
communication links within the original topology [17] [18].
Nonetheless, sparse topologies may suffer from high variance
and difficult convergence issues [19]. An alternative approach
to curbing communication overhead is hierarchical clustering
topology, wherein workers form clusters with a selected aggre-
gator for each cluster responsible for local model aggregation
and external network communication. Nevertheless, current
hierarchical FL research encompasses at most two-tier servers.
In expansive edge networks with numerous workers, two-tier
servers may also not be able to withstand the heavy model
transmission, thereby evolving into bottlenecks. Moreover, a
less hierarchical topology might struggle to support more fine-
grained clustering strategy to address edge heterogeneity.

In this paper, we propose a data-aware clustering mecha-
nism, called FRACTAL1, to construct a multi-tier hierarchical
topology for DFL. As shown in Fig. 1, nodes are hierarchically
clustered in a bottom-up manner and an H-tier topology is
finally constructed as in Fig. 2. During this process, a node
in each cluster is selected to assume the role of aggregator,
thereby establishing the fundamental building block called a
“fractal unit”2 within the FRACTAL mechanism. In addition to
the communication factor, we also consider the data distribu-
tion among the clusters while hierarchically clustering, such
that we tend to cluster nodes to approximate an IID-like data
distribution among clusters. In order to further improve com-
munication efficiency and address edge heterogeneity, within
each fractal unit, we propose a time-sharing communication
scheduling algorithm, called magic mirror method (MMM), to
determine the order of model distributing and uploading for
nodes3.

The main contributions of this paper are as follows:
• We theoretically explore the quantitative relationship be-

tween the convergence bound of multi-tier FL and the
data distribution among each-tier servers.

• For the model transmission within one fractal unit, we
propose a novel time-sharing communication scheduling
algorithm MMM to determine the order of model dis-
tributing and uploading. We further prove that MMM can
obtain a local optimal schedule.

• Based on both the convergence analysis for multi-tier
FL and the time-sharing scheduling strategy within one

1In mathematics, a fractal is a geometric shape containing detailed structure
at arbitrarily small scales, called self-similarity property. We inspired by
this concept and use it to name our multi-tier DFL structures with similar
structures.

2A fractal unit is a term used in fractal geometry to describe a basic shape
or pattern that is repeated at different scales to form a complex structure.
We use fractal unit to represent a structure, that is, multiple workers/servers
connected to an aggregator.

3We collectively refer to a worker or server as a node when the roles of
them do not affect semantics.

Fig. 1: Topology construction.

Fig. 2: Three-tier topology example with N0 = 16, N1 = 7,
N2 = 3, N3 = 1.

fractal unit, we design the mechanism FRACTAL to con-
struct a multi-tier hierarchical topology for DFL, by joint
considering the data distribution and communication.

• Experimental results on the classical models and datasets
show that, by deploying FRACTAL, the DFL model train-
ing can be greatly accelerated by 48.6%-72.3% compared
with the state-of-the-art solutions.

The rest of this paper is organized as follows. Section II
reviews the related works. Section III formalizes the multi-
tier hierarchical topology in DFL, and Section IV gives
the convergence analysis for it. We propose an time-sharing
scheduling strategy within a fractal unit in Section V. The
clustering algorithm FRACTAL is introduced in Section VI. The
Experimental results are shown in Section VII. We conclude
this paper in Section VIII.

II. RELATED WORKS

A. Network Topology for Decentralized Federated Learning

This section reviews the existing DFL architectures in terms
of network topologies, which can be classified into three cat-
egories: fully connected, partially connected, and hierarchical
clustering topologies [14].

Fully connected topologies [15] [16] allow workers to
transmit their models to each other through peer-to-peer (P2P)
communication. For instance, [15] proposes a fully connected
topology for decentralized federated learning across multiple

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 3

medical centers without sharing data or relying on a cen-
tral server. However, this topology requires each worker to
share its model with all the others, which incurs significant
communication overhead and may compromise the training
performance.

Partially connected topologies reduce the communication
overhead by enabling each worker to exchange its local model
only with its neighboring workers. For example, GossipFL
[12] proposes a framework where each client only needs
to exchange its model with a single peer at each round to
reduce the bandwidth costs. D2D-FL [20] leverages device-
to-device communication for model training in DFL to save
bandwidth and energy consumption. MATCHA [17] uses
matching decomposition to split the original network topol-
ogy into disjoint subgraphs and communicates over different
subgraphs at different frequencies. L2PL [18] introduces a
learning-driven method to dynamically construct an optimal
partially connected topology at each training epoch. D-Cliques
[21] proposes a novel topology that reduces gradient bias by
grouping nodes in interconnected cliques such that the local
joint distribution in a clique is representative of the global class
distribution. However, high-variance problem among workers
is particularly pronounced with sparse topologies, potentially
hampering model convergence, especially in the presence of
Non-IID data [19].

Hierarchical clustering topologies cluster workers into
groups and organize them into a hierarchical structure, mainly
explored via two aspects: clustering techniques and hierarchi-
cal structure. The existing clustering techniques are usually
revolve around two considerations: communication and data
distribution. For example, in [22]–[26], workers are clus-
tered to the aggregator with the shortest communication time
(or distance). On the other hand, [27] concentrate on data
distribution, intending to align intra-cluster data distribution
with the global while clustering. The organization of clusters
consists of two fashions: centralized and decentralized. The
centralized approach [22] [27] employs a 2nd-tier global
server to aggregate the cluster models. However, this two-tier
hierarchical structure still confronts high transmission burdens
in large-scale edge networks. In the decentralized approach
[24] [25], each cluster aggregator interacts with neighboring
aggregators akin to partially connected topologies. However,
it also confronts the convergence challenges similar to those
in partially connected topologies.

In this paper, we propose a multi-tier hierarchical topology,
aiming to ameliorate the limitations in less tier hierarchical
topologies. The proposed approach to clustering nodes inte-
grates considerations of data distribution and communication
consumption among clusters.

B. Transmission Technology for Federated Learning in Mobile
Edge Networks

Due to system bandwidth limitation and wireless interfer-
ence in mobile edge networks, edge nodes typically com-
municate with their aggregator (i.e., parameter server) using
frequency-sharing (FS) or time-sharing (TS) methods for FL
model aggregations. FS communication is employed in [28]

[29], where frequency is allocated to multiple nodes for model
uploading, effectively enhancing communication efficiency.
However, due to edge heterogeneity, individual nodes may
possess varying computation capabilities and communication
quality with the aggregator. This leads to differences in model
training and transmission times. Yet, the frequency assigned
for nodes is static, potentially resulting in idle periods and
wastage of bandwidth resources [30].

TS communication [30]–[32] allows nodes to take turns
using the whole bandwidth resources, which can improve
flexibility and adaptability for heterogeneous networks. Conse-
quently, only one node is uploading its model to the aggregator
in any time period. Therefore, TS communication requires
careful scheduling of nodes to optimize the model updating
time. However, most existing TS-based FL researches assume
that the downlink transmission rate is much higher than
the uplink transmission rate by default, and thus ignore the
downlink time when the aggregator distributes the aggregated
model. This assumption may not hold for decentralized FL
on mobile edge networks, where edge nodes with limited
transmission power act as aggregators. Therefore, this paper
considers the disparities in model distribution, local training,
and model uploading times among heterogeneous edge nodes,
and proposes a TS scheduling strategy that minimizes the
single round model updating time.

Another approach to improve wireless communication effi-
ciency for FL model aggregation is over-the-air computation
(AirComp) [33]–[35]. It is achieved by synchronizing nodes
to transmit their local model vectors concurrently, leveraging
the superposition property of wireless multiple access chan-
nels (MAC) to sum these vectors over-the-air [36]. However,
AirComp-based aggregation is prone to noise and channel
fading, resulting in inaccurate aggregated model. Moreover,
AirComp requires strict synchronization among nodes, which
is challenging to achieve on heterogeneous edge networks.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the concept of federated
learning (Section III-A). Then we describe the multi-tier
hierarchical federated learning system (Section III-B). For ease
of expression, some key notations are listed in Table I.

A. Federated Learning (FL)

We consider a K-class classification problem, where the la-
bel space is denoted as C = {c1, c2, ..., cK}. The classification
task is performed through federated learning, which involves
a set of N0 workers denoted as V = {v1, v2, ..., vN0}.

Each individual worker vi is responsible for training a local
model using a dataset of size di. The data belonging to class
ck available on worker vi is denoted as dki , and it holds that∑
ck∈C d

k
i = di. The total data size across all workers is

represented as D =
∑
vi∈V di. We define αi = di/D and

γk =
∑
vi∈V d

k
i /D to represent the proportion of data size

belonging to worker vi and class ck in the entire dataset,
respectively. Considering the classification problem, we adopt

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 4

TABLE I: Key Notations.

Symbol Semantics

V The set of workers {v1, v2, ..., vN0
}

C The set of labels {c1, c2, ..., cK}

jh
The index of the hth-tier server, satisfying∑

0≤h′≤h−1Nh′ + 1 ≤ jh ≤
∑

0≤h′≤hNh′

Jh
The set of the indexes of the (h− 1)th-tier
nodes in cluster Vjh

vjh The node at the hth-tier
Vjh The set of nodes whose aggregator is vjh
di The data size on worker vi
dki The data size labeled as ck on worker vi
Djh The total data size of workers in cluster Vjh
Dk
jh

The data size labeled as ck in cluster Vjh
D The total data size on all workers

φjh
The proportion of the data size of node vjh
in its cluster

fi(w) The loss function of worker vi
Fj(w) The loss function of cluster Vj
F (w) The global loss function
wt The global model at round t
vit The local model of worker vi at round t
ṽit The trained local model of worker vi at round t

wjh
t The model of hth-tier server vjh at round t

w̃jh
t

The aggregated model of hth-tier server vjh
at round t

the widely-used cross-entropy loss function [37] represented
as follows:

F (w) ,
∑
ck∈C
−γkEx|y=ck [log pk(x,w)], (1)

where pk(x,w) denotes the predicted probability of input x
belonging to class ck under the model parameter w. To account
for the distributed nature of federated learning, we also define
the local loss function for worker vi as follows:

fi(w) ,
∑
ck∈C
−αki Ex|y=ck [log pk(x,w)], (2)

where αki = dki /di represents the proportion of the data size
corresponding to class ck on worker vi. It is worth noting
that the global loss function can be expressed as the sum of
the local loss functions across all workers, weighted by their
respective data proportions:

F (w) =
∑
vi∈V

di
D
fi(w) =

∑
vi∈V

αifi(w). (3)

Thus, the learning problem aims to find the optimal parameter
vector w∗ that minimizes the global loss function F (w),
formally expressed as w∗ = arg minw F (w).

B. Multi-tier Hierarchical Federated Learning System

In this section, we formalize the multi-tier hierarchical
federated learning system, and the workflow of the model
updating is formally described in Alg. 1.

1) System Architecture: The system consists of N0 de-
centralized workers V = {v1, v2, ..., vN0}, which form a
hierarchical structure with H tiers. These N0 workers are
organized into N1 clusters VN0+1, VN0+2, ..., VN0+N1

, which
are associated with a 1st-tier server vN0+1, vN0+2, ..., vN0+N1

,
respectively. Each tier server is acted as a worker within its
cluster. Moving further, the N1 1st-tier servers are grouped into
N2 clusters VN0+N1+1, VN0+N1+2, ..., VN0+N1+N2 , which are
associated with a 2nd-tier server vN0+N1+1, vN0+N1+2, ...,
vN0+N1+N2

, respectively. This hierarchical arrangement con-
tinues up to the Nh hth-tier servers, which are organized into
Nh+1 clusters, with each cluster equipped with a (h+1)th-tier
server. Ultimately, the (H−1)th-tier servers are interconnected
with a global parameter server. Each server is responsible
for receiving and aggregating models from nodes (workers or
servers) at a lower tier within its cluster and communicating
with its higher tier server.

For convenience, let jh denote the index of the hth-tier
server, satisfying

∑
0≤h′≤h−1Nh′ + 1 ≤ jh ≤

∑
0≤h′≤hNh′ ,

and Jh denote the set of the indexes of (h − 1)th-tier nodes
in cluster Vjh . Specially, j0 = i denotes the index of a
worker, satisfying 1 ≤ j0 ≤ N0, and jH =

∑
0≤h≤H Nh =∑

0≤h≤H−1Nh + 1 is the index of the global server. The
sum of the data size of workers in 1st-tier cluster Vj1 can be
calculated as Dj1 =

∑
i∈J1

di, N0 + 1 ≤ j1 ≤ N0 + N1.
Sequentially, let Djh denote the total data size of the hth-tier
cluster Vjh , satisfying

Djh =

{
di, h = 0∑
jh−1∈Jh

Djh−1
, 1 ≤ h ≤ H ,

(4)

2) Local Training: Let vt denote the model of worker vi
at round t. At each round t, worker vi performs local model
updating based on the previous round’s local model vt−1 as

ṽt = vt−1 − η∇fi(vt−1, ξit−1), (5)
where η denotes the learning rate, ∇ denotes the gradient
operator, and ξit−1 is a sample uniformly chosen from the local
data. Then vi uploads its local model ṽt to the corresponding
1-st tier server (Lines 3-6).

3) Cluster Aggregation at a Tier Server: Let wjh
t denote

the model of server vjh at round t. Upon receiving the model
from each node vjh−1

within cluster Vjh , the tier server vjh
performs cluster aggregation as

w̃jh
t =

∑
jh−1∈Jh

Djh−1

Djh

w̃
jh−1

t =
∑

jh−1∈Jh

φjh−1
w̃
jh−1

t . (6)

where φjh−1
is the proportion of the data size of node vjh−1

in its cluster.
4) Global Aggregation: Upon receiving the cluster models

from all (H−1)th-tier node, the global server aggregates them
as

wt = w̃jH
t =

∑
jH−1∈JH

φjH−1
w̃
jH−1

t . (7)

Then the recurrence relation for model updating can be ex-
pressed as

w̃jh
t =

{
vt, h = 0∑
jh−1∈Jh

φjh−1
w̃
jh−1

t , 1 ≤ h ≤ H ,
(8)

5) Model Distributing: After global aggregation, the global
server distributes the global model wt to all nodes in the (H−

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 5

Algorithm 1 Hierarchical Aggregation Federated Learning

1: for t = 1 to T do
2: Processing at Each Worker vi
3: Train local model ṽit by Eq. (5)
4: Upload ṽit to its upper server vj1
5: Receive wj1

t from vj1
6: ṽit = wj1

t

7:
8: Processing at Each h-th Tier Server vjh
9: Receive w̃

jh−1

t from each server vjh−1
∈ Vjh

10: Obtain cluster model w̃jh
t by Eq. (6)

11: Send w̃jh
t to its upper server vjh+1

12: Receive w
jh+1

t from its upper server
13: wjh

t = w
jh+1

t

14: Distribute wjh
t to each server vjh−1

∈ Vjh
15:
16: Processing at the Global Server
17: Receive w̃

hH−1

t from each server vjH−1
∈ VjH

18: Update global model wt by Eq. (7)
19: Distribute wt to each server vjH−1

∈ VH

1)-th tier server (Line 19). Each tier server vjh updates its
cluster model to match the global model, i.e., wjh

t = wt (Line
13). At last, the global model is sent to all workers as their
local models in the new round, i.e., vit = wt (Line 6).

IV. CONVERGENCE ANALYSIS

In this section, we first give several general assumptions in
federated learning (Section IV-A). Then we obtain the conver-
gence bound through theoretical analysis (Section IV-B).

A. Assumptions

We make the following assumptions on the loss functions
fi(w),∀vi ∈ V in Eq. (2) for convergence analysis, which are
widely used in the existing literatures [38] [39].

Assumption 1 (Smoothness): fi(w) is L-smooth with L > 0,
i.e., ∀w1,w2, fi(w2) − fi(w1) ≤ 〈∇fi(w1),w2 − w1〉 +
L
2 ‖w2 −w1‖2.

Assumption 2 (Strong convexity): fi(w) is µ-strongly convex
with µ ≥ 0, i.e., ∀w1,w2, fi(w2)−fi(w1) ≥ 〈∇fi(w1),w2−
w1〉+ µ

2 ‖w2 −w1‖2.

Note that models with convex loss functions, such as linear
regression and support vector machines, satisfy Assumption 2.
The evaluation results in Section VII show that our mechanism
can also work well for models (e.g., AlexNet) with non-convex
loss functions.

Assumption 3 (Variance Bounded): The variance of stochastic
gradients in each device is bounded, i.e., ∀i, t, E‖∇fi(wt

i)−
∇fi(wt

i , ξ
t
i)‖2 ≤ σ2

i .

Assumption 4 (Gradient Bounded): The expected squared
norm of stochastic gradients is uniformly bounded, i.e., ∀k,w,
E‖Gk(w)‖2 ≤ G2, where Gk(w) = ∇Ex|y=ck [log pk(x,w)].

Assumption 5 (Existence of global optimal): Assume that the
learning problem has at least one solution w∗ minimizing the
global loss function F (w), i.e., ∇F (w∗) = 0.

B. Analysis of Convergence Bounds
1) Convergence Analysis of Cluster Aggregation: For ease

of expression, we introduce some notations. The earth mover
distance (EMD) [40] is applied to represent the difference of
data distribution between two datasets D1 and D2 as

EMD(D1,D2) =
∑
ck∈C
‖D

k
1

D1
− Dk

2

D2
‖. (9)

We denote Γj as the EMD between cluster Vjh ’s dataset Dj
and the global dataset D, i.e.,

Γj = EMD(D,Dj) =
∑
ck∈C
‖D

k

D
−
Dk
jh

Djh

‖. (10)

Theorem 1 : w0 is the initial global model. If η < 1
L , After the

global aggregation Eq. (7) is performed T times, the trained
global model wT satisfies
E[F (wT)]− F (w∗) ≤ (1− µη)T (F (w0)− F (w∗))

+
1− (1− µη)T

2µ
(

∑
1≤h≤H

2hΦ(h) + 2H∆).

where Φ(h) =
∑
jH−1∈JH

φjH−1

∑
jH−2∈JH−1

φjH−2
...∑

jh−1∈Jh
φjh−1

Γjh−1
and ∆ =

∑
jH−1∈JH

φjH−1∑
jH−2∈JH−1

φjH−2
...

∑
i∈J1

φiσ
2
i .

Proof: According to Eqs. (5) and (6), it holds that
wt =

∑
jH−1∈JH

φjH−1
w̃
jH−1

t

=
∑

jH−1∈JH

φjH−1

∑
jH−2∈JH−1

φjH−2
w̃
jH−2

t

=
∑

jH−1∈JH

φjH−1

∑
jH−2∈JH−1

φjH−2
...

∑
j1∈J2

φ2j1

∑
j0∈J1

φ1j0w̃
j0
t

=
∑

jH−1∈JH

φjH−1

∑
jH−2∈JH−1

φjH−2
...

∑
j1∈J2

φ2j1

∑
i∈J1

φ1i ṽ
i
t

=
∑

jH−1∈JH

φjH−1

∑
jH−2∈JH−1

φjH−2

...
∑
j1∈J2

φ2j1

∑
i∈J1

φ1i (wt−1 − η∇fi(wt−1, ξ
i
t−1))

=wt−1 − η
∑

jH−1∈JH

φHjH−1

...
∑
j1∈J2

φ2j1

∑
i∈J1

φ1i∇fi(wt−1, ξ
i
t−1)

=wt−1 − ηFjH (wt−1)

where

Fjh(wt) =

{
∇fi(wt, ξ

i
t), h = 0∑

jh−1∈Jh
φjh−1

Fjh−1
(wt), 1 ≤ h ≤ H ,

(11)
According to Assumption 1, it is obvious that F is L-smooth.
If η < 1

L , it follows
F (wt+1)− F (w∗)

≤F (wt)− F (w∗) + 〈∇F (wt),wt+1 −wt〉

+
L

2
‖wt+1 −wt‖2

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 6

=F (wt)− F (w∗)− η〈∇F (wt),F(H)〉+
Lη2

2
‖FjH (wt)‖2

≤F (wt)− F (w∗) +
η

2
‖∇F (wt)−FjH (wt)‖2

− η

2
‖∇F (wt)‖2 (12)

By using the AM-GM Inequality and the Jensen’s Inequality,
we deduce that
‖∇F (wt)−FjH (wt)‖2

=‖∇F (wt)−
∑

jH−1∈JH

φHjH−1
∇FjH−1

(wt)

+
∑

jH−1∈JH

φHjH−1
∇FjH−1

(wt)−FjH (wt)‖2

≤2‖∇F (wt)−
∑

jH−1∈JH

φjH−1
∇FjH−1

(wt)‖2

+ 2‖
∑

jH−1∈JH

φjH−1
∇FjH−1

(wt)−FjH (wt)‖2

≤2
∑

jH−1∈JH

φjH−1
‖∇F (wt)−∇FjH−1

(wt)‖2

+ 2
∑

jH−1∈JH

φjH−1
‖∇FjH−1

(wt)−FjH−1
(wt)‖2. (13)

According to Assumption 4, we deduce that
E‖∇F (wt)−∇FjH−1

(wt)‖2

=E‖
∑
ck∈C

(
Dk
jH−1

DjH−1

− Dk

D
)Gk(wt)‖2

≤Γ2
jH−1

G2, (14)
Similar to Eqs. (13) and (14), when h = H − 1, it holds

‖∇FjH−1
(wt)−FjH−1

(wt)‖2

≤2
∑

jH−2∈JH−1

φjH−2
‖∇FjH−1

(wt)−∇FjH−2
(wt)‖2

+ 2
∑

jH−2∈JH−1

φjH−2
‖∇FjH−2

(wt)−FjH−2
(wt)‖2.

(15)
and

E‖∇FjH−1
(wt)−∇FjH−2

(wt)‖2 ≤ Γ2
jH−2

G2, (16)
Iteratively, we deduce the bound of ‖∇Fjh(wt)−Fjh(wt)‖2
for h ranges from H to 1. Specially, when h = 0, according
to Assumption 3, it holds
E‖∇Fj0(wt)−Fj0(wt)‖2 =E‖∇fi(wt)−∇fi(wt, ξ

i
t)‖2

≤σ2
i . (17)

By taking the bounds of ‖∇Fjh(wt) − Fjh(wt)‖2, ∀h ∈
[0, H − 1] into Eq. (13), we deduce that

‖∇F (wt)−FjH (wt)‖2

≤2Φ(H) + 4Φ(H − 1) + ...+ 2HΦ(1) + 2H∆

=
∑

1≤h≤H

2hΦ(h) + 2H∆, (18)

where Φ(h) =
∑
jH−1∈JH

φjH−1

∑
jH−2∈JH−1

φjH−2
...∑

jh−1∈Jh
φjh−1

Γ2
jh−1

and ∆ =
∑
jH−1∈JH

φjH−1∑
jH−2∈JH−1

φjH−2
...
∑
i∈J1

φiσ
2
i . According to Assumption

2, it is obvious that F is µ-strongly convex. Combining with
Assumption 5, it follows

‖∇F (wt)‖2 =‖∇F (wt)−∇F (w∗)‖2

≥2µ(F (wt)− F (w∗)). (19)

By taking Eqs. (18) and (19) into Eq. (12), we deduce that
F (wt+1)− F (w∗)

≤(1− µη)(F (wt)− F (w∗)) +
η

2
(

∑
1≤h≤H

2hΦ(h) + 2H∆)

(20)
By using the recursive relation Eq. (20) from round T to round
0, we obtain that
F (wT)− F (w∗)

≤(1− µη)(F (wT−1)− F (w∗)) +
η

2
(

∑
1≤h≤H

2hΦ(h) + 2H∆)

≤(1− µη)2(F (wT−2)− F (w∗))

+ [1 + (1− µη)]
η

2
(

∑
1≤h≤H

2hΦ(h) + 2H∆)

...

≤(1− µη)T (F (w0)− F (w∗))

+
1− (1− µη)T

1− (1− µη)

η

2
(

∑
1≤h≤H

2hΦ(h) + 2H∆)

=(1− µη)T (F (w0)− F (w∗))

+
1− (1− µη)T

2µ
(

∑
1≤h≤H

2hΦ(h) + 2H∆)

Thus, we complete the proof.

V. MAGIC MIRROR METHOD FOR TIME-SHARING
COMMUNICATION SCHEDULING

A. Time-sharing Communication

Recall that a fractal unit is a structure where multiple nodes
(workers/servers) connected to an aggregator. We deploy time-
sharing strategy [30]–[32] for each fractal unit in FRACTAL,
i.e., only one node is uploading or receiving models in any
time period. Due to edge heterogeneity, nodes in a fractal
may have diverse computation capability and communication
quality with the aggregator, which results in different model
training and transmission time. Let ci denote the model train-
ing time on worker vi. ai and bi denote the model distributing
time and model uploading time between worker vi and its
aggregator, respectively. Since workers’ model training can be
performed in parallel, different scheduling strategies for model
distributing and uploading will result in different completion
time of aggregation.

Let G = (Od1k1 , ...O
dn
kn
, ..., Od2Nk2N

) denote a schedule for
model aggregation, where Odnkn is the nth operation in schedule
G, and sequence k1, k2, ..., k2N is a rearrangement of sequence
1, 1, 2, 2..., N , N . If the nth operation Odnkn is distributing
model to worker vkn , dn = a, and if it is uploading model
from worker vkn , dn = b.

Note that as long as a schedule is determined, the comple-
tion time of model aggregation can be calculated accordingly.
Let Ln denote the completion time after executing the nth

operation Ocnkn . Initially, we set L0 = 0, and obtain the
following recursive relation:
1) If Odnkn is a distributing operation, i.e., dn = a, we have

Ln = Ln−1 + akn . (21)

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 7

v

L L L LL

G

L L L L

v

v

v

Fig. 3: One schedule G = (Oa1 , O
b
1, O

a
2 , O

a
3 , O

a
4 , O

b
2, O

b
3, O

b
4).

Let pi denote the completion time of local training on worker
vi. Therefore, the completion time of local training on worker
vkn can be calculated as

pkn = Ln + ckn = Ln−1 + akn + ckn , dn = a. (22)
2) If Odnkn is a uploading operation, i.e., dn = b, its start time
is equal to the larger of Ln−1 and pkn , and its completion
time is

Ln = max{Ln−1, pkn}+ bkn . (23)
We derive the recursive formula as

Ln =


0, n = 0

Ln−1 + akn , 1 ≤ n ≤ 2N, dn = a

max{Ln−1, pkn}+ bkn , 1 ≤ n ≤ 2N, dn = b.
(24)

Finally, the completion time of model aggregation under
schedule G is L2N , and our problem is to determine the
schedule G, so as to minimize L2N .

To better illustrate the impact of a schedule on the TS-
DU completion time, we give an example with four nodes
v1-v4 and a aggregator in the system as shown in Fig. 3.
The schedule is G = (Oa1 , O

b
1, O

a
2 , O

a
3 , O

a
4 , O

b
2, O

b
3, O

b
4). For

example, the 1st operation Oa1 is distributing model to worker
v1, so its completion time is L1 = L0 + a1, and completion
time of local training on v1 is p1 = L0 + a1 + c1. For another
example, the 7th operation Ob3 is uploading model from worker
v3. Since the completion time of the 6th operation is larger
than that of local training on v3, i.e., L6 > p3, the completion
time of the 7th operation is L7 = max{L6, p3}+b3 = L6+b3.
L8 is the completion time of model aggregation under schedule
G.

B. Magic Mirror Method

We propose a novel algorithm, called the magic mirror
method (MMM), to obtain a time-sharing schedule for each
fractal unit in our FRACTAL mechanism.

The main idea of the algorithm is to initially generate a dis-
tributing sequence and a uploading sequence (Section V-B1),
then alternately fix the distributing/uploading sequence and re-
duce the completion time by reordering uploading/distributing
sequence (Sections V-B2, V-B3 and V-B4). Finally, the al-
gorithm converges to obtain a local optimal schedule, and

Fig. 4: The relationship between the workflow and the lem-
mas/theorems.

a particle swarm optimization algorithm based on MMM is
proposed to increase the probability of obtaining the global
optimal (Section V-B5). The relationship between the work-
flow and the associated theorems is elaborated in Fig. 4.

1) Dividing Original Schedule: In this section, we theoret-
ically prove that there must be an optimal schedule where the
first N operations are distributing operations and the last N
are uploading operations.

Lemma 1 : An schedule G = (Oc1k1 , O
c2
k2
, ..., Oc2Nk2N

)

can be transformed into a new schedule Ĝ =
(Oai1 , O

a
i2
, ..., OaiN , O

b
j1
, Obj2 , ..., O

b
jN

), where the first N
operations are distributing operations and the last N are
uploading operations, such that the completion time under
schedule Ĝ is not greater than that under schedule G.

Proof. Suppose that the nth operation in the schedule G is
a uploading operation, while the (n + 1)th operation is a
distributing operation, i.e., Obkn , O

a
kn+1

∈ G. According to Eq.
(24), the completion time of Obkn is

Ln = max{Ln−1, pkn}+ bkn , (25)
then the completion time of Oakn+1

is
Ln+1 =Ln + akn+1

= max{Ln−1, pkn}+ bkn + akn+1

= max{Ln−1 + akn+1
, pkn + akn+1

}+ bkn . (26)
Now we swap the order of Obkn and Oakn+1

in G to obtain Ĝ.
Then the completion time of the nth operation Oakn+1

in Ĝ
becomes

L̂n = Ln−1 + akn+1 , (27)
and the completion time of the (n+ 1)th operation Obkn in Ĝ
becomes

L̂n+1 = max{L̂n, pkn}+ bkn (28)
= max{Ln−1 + akn+1

, pkn}+ bkn .
It is obvious that Ln+1 ≥ L̂n+1. Similarly, we can deduce that
Ln+2 ≥ L̂n+2, Ln+3 ≥ L̂n+3, ..., L2N ≥ L̂2N . Thus, the TS-
DU completion time does not increase after swapping the order
of two adjacent operation, the first of which is a uploading
operation and the second of which is a distributing operation.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 8

v

v

v

v

v

v

v

v

G

Fig. 5: Dividing original schedule to a distributing and a
uploading sequence.

By swapping several times, all N distributing operations can
be finally moved to the first N positions of the schedule
without completion time increasing.

We give an example to visualize Lemma 1 as shown in
Fig. 5. For a schedule G = (Oa1 , O

b
1, O

a
2 , O

a
3 , O

a
4 , O

b
2, O

b
3, O

b
4)

in Fig. 5(a), the 2nd operation is Ob1, which is ear-
lier than distributing operations Oa2 , Oa3 and Oa4 . By
swapping in Lemma 1, the new strategy becomes Ĝ =
(Oa1 , O

a
2 , O

a
3 , O

a
4 , O

b
1, O

b
2, O

b
3, O

b
4) as shown in Fig. 5(b). We

can visually observe that the completion time under Ĝ is
smaller then that under G.

By Lemma 1, we reconstruct a schedule where the first
N operations form a distributing sequence Oai1 , O

a
i2
, ...OaiN ,

and the last N operations form a uploading sequence
Obj1 , O

b
j2
, ...ObjN , where i1, i2, ..., iN and j1, j2, ..., jN are rear-

rangements of 1, 2, ..., N . Based on this, the formulas in Eqs.
(22) and (24) are re-derived. By setting n from 1 to N in turn,
the completion time of local training on vin can be calculated
according to Eq. (22) as follows

pin =
∑n

m=1
aim + cin . (29)

Let li denote the completion time of vi’s uploading operation
Obi . From Eq. (24), the completion time of operation Objn is
calculated as the recursive formula

ljn =

{∑N
i=1 ai, n = 0

max{ljn−1 , pjn}+ bjn , 1 ≤ n ≤ N .
(30)

Since ObjN is the last operation to be executed, the completion
time of TS-DU is L2N = ljN .

2) Reordering Uploading Sequence: To reorder the upload-
ing sequence, we first give the following lemma.

v

v

v

v

v

v

v

v

G

G

Fig. 6: Reorder Uploading Sequence.

Lemma 2 : If the distributing sequence is fixed, the TS-DU
completion time will be minimized by reordering the uploading
sequence as Obj1 , O

b
j2
, ...ObjN , such that pj1 ≤ pj2 ≤ ... ≤ pjN .

Proof. Suppose that the completion time of local training on
vjn and vjn+1 satisfies pjn ≥ pjn+1 . From Eq. (30), the
completion time of Objn is ljn = max{ljn−1

, pjn}+ bjn . Then
the completion time of Objn+1

is
ljn+1

= max{ljn , pjn+1
}+ bjn+1

= max{max{ljn−1
, pjn}+ bjn , pjn+1

}+ bjn+1

= max{ljn−1
+ bjn + bjn+1

, pjn + bjn + bjn+1
,

pjn+1
+ bjn+1

}.
The completion time of Objn in the reordered sequence Obj1 ,
..., Objn+1

, Objn , ..., ObjN is
l̂jn = max{l̂jn+1

, pjn}+ bjn

= max{max{ljn−1
, pjn+1

}+ bjn+1
, pjn}+ bjn

= max{ljn−1
+ bjn+1

+ bjn , pjn+1
+ bjn+1

+ bjn , pjn + bjn}.
Since pjn ≥ pjn+1 , it holds ljn+1 ≥ l̂jn . Then we can easily
deduce ljn+2

≥ l̂jn+2
,..., ljN ≥ l̂jN , i.e., L2N ≥ L̂2N .

Thus the TS-DU completion time will not increase after
swapping the order of Objn and Objn+1

in the uploading
sequence Obj1 , O

b
j2
, ..., Objn , O

b
jn+1

, ..., ObjN . By swapping sev-
eral times, the uploading sequence can be transformed into
Obj1 , O

b
j2
, ...ObjN , satisfying pj1 ≤ pj2 ≤ ... ≤ pjN , without

completion time increasing.

By Lemma 2, we illustrate that if the distributing sequence
Oai1 , O

a
i2
, ..., OaiN is fixed, the TS-DU completion time will be

minimized by reordering the uploading sequence as Obj1 , Obj2 ,
..., ObjN , such that their prepare time satisfies pj1 ≤ pj2 ≤
... ≤ pjN . Visually, as shown in Fig. 6(a), the prepare time
of Ob1, Ob2, Ob3 and Ob4 is p1 = a1 + c1, p2 = a1 + a2 + c2,

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 9

G

v

v

v

v

v

v

v

v

G

Fig. 7: Symmetry of the mirroring schedule.

p3 = a1 + a2 + a3 + c3 and p4 = a1 + a2 + a3 + a4 + c4,
respectively, satisfying p1 ≤ p3 ≤ p2 ≤ p4. Accordingly, the
uploading sequence is reordered to Ob1, O

b
3, O

b
2, O

b
4 as shown

in Fig. 6(b).
3) The Symmetry of Mirror Schedule: From Lemma 2, it

is easy to determine the order of the uploading sequence that
minimizes the TS-DU completion time when the distributing
sequence is fixed, whereas conversely, it is hard to determine
the order of the distributing sequence when the uploading
sequence is fixed. We introduce the concept of mirror schedule
to assist in solving this problem.

Definition 1 : The mirror schedule is the symmetry of a
real schedule, adopting the reversed uploading sequence ObjN ,
ObjN−1

, ..., Obj1 as its distributing sequence, and adopting
the reversed distributing sequence OaiN , OaiN−1

, ..., Oai1 as its
uploading sequence.

For example, a real schedule in Fig. 7(a) is with dis-
tributing sequence Oa1 , O

a
2 , O

a
3 , O

a
4 , and uploading sequence

Ob1, O
b
3, O

b
2, O

b
4. Fig. 7(b) shows its corresponding mirror

schedule, with distributing sequence Ob4, O
b
2, O

b
3, O

b
1 and u-

ploading sequence Oa4 , O
a
3 , O

a
2 , O

a
1 .

It can be observed visually that the TS-DU completion time
under a schedule is equal to that under its mirror schedule.

We theoretically prove the symmetry between an arbitrary
schedule and its mirror schedule by Lemma 3. For theoretical
proof, we first derive the completion time of each operation
in the mirror schedule. Similar to the derivation of Eqs. (29)
and (30), by setting n from N to 1 in turn, the prepare time
of Oajn in the mirror schedule is calculated as

qjn =
∑N

m=n
bjm + cjn . (31)

and the completion time of Oain in mirror schedule is calcu-
lated as

sin =

{∑N
j=1 bj , n = N + 1

max{sin+1
, qin}+ ain , 1 ≤ n ≤ N .

(32)

Since Oai1 is the last operation in the mirror schedule, its
completion time is equal to L̂2N = si1 .

Lemma 3 (Symmetry): The TS-DU completion time under a
schedule is equal to that under its mirror schedule.

Proof. Recall that we consider a schedule with distributing
sequence Oai1 , Oai2 , ..., OaiN and the uploading sequence
Obj1 , Obj2 ,..., ObjN , where i1, i2, ..., iN and j1, j2, ..., jN are
rearrangements of 1, 2, ..., N . Let R(n) denote the position
of Oajn in the distributing sequence, and R′(n) denote the
position of Obin in the uploading sequence. It is obvious that
R(R′(n)) = n and R′(R(n)) = n for 1 ≤ n ≤ N . By Eq.
(30), the completion time under the schedule is

L2N = ljN
= max{ljN−1

, pjN }+ bjN
= max{ljN−1

+ bjN , pjN + bjN }
= max{max{ljN−2

, pjN−1
}+ bjN−1

+ bjN , pjN + bjN }
= max{ljN−2

+ bjN−1
+ bjN , pjN−1

+ bjN−1
+ bjN ,

pjN + bjN }
=...

= max{lj0 +

N∑
n=1

bjn , pj1 +

N∑
n=1

bjn , pj2 +

N∑
n=2

bjn ,

..., pjN−1
+ bjN−1

+ bjN , pjN + bjN }. (33)
By Eq. (29), pin =

∑n
m=1 aim + cin for n ∈ [1, N]. Besides,

lj0 =
∑N
i=1 ai and

∑N
n=1 bjn =

∑N
i=1 bi, thus we have

L2N

= max{
N∑
i=1

(ai + bi), pj1 +

N∑
n=1

bjn , pj2 +

N∑
n=2

bjn

, ..., pjN−1
+ bjN−1

+ bjN , pjN + bjN }

= max{
N∑
i=1

(ai + bi),

R(1)∑
m=1

aim + cj1 +
N∑
m=1

bjm ,

R(2)∑
m=1

aim + cj2 +

N∑
m=2

bjm , ...,

R(N)∑
m=1

aim + cjN + bjN }

= max{
N∑
i=1

(ai + bi)} ∪Q, (34)

where Q = {
∑R(n)
m=1 aim + cjn +

∑N
m=n bjn |1 ≤ n ≤ N} and

L2N is the maximum among {
∑N
i=1(ai + bi)} ∪ Q. By Eq.

(32), the completion time under the mirror schedule is
L̂2N =si1

= max{si2 , qi1}+ ai1

= max{si2 + ai1 , qi1 + ai1}
= max{max{si3 , qi2}+ ai2 + ai1 , qi1 + ai1}
= max{si3 + ai2 + ai1 , qi2 + ai2 + ai1 , qi1 + ai1}
=...

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 10

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

G G

GG

Fig. 8: Reorder Distributing Sequence.

= max{siN+1
+

N∑
n=1

ain , qiN +

N∑
n=1

ain ,

qiN−1
+

N−1∑
n=1

ain , ..., qi1 + ai1}.

By Eq. (31), qjn =
∑N
m=n bjm +cjn for 1 ≤ n ≤ N . Besides,

siN+1
=

∑N
i=1 bi and

∑N
n=1 ain =

∑N
i=1 ai, thus we have

L̂2N = max{
N∑
i=1

(bi + ai), qiN +

N∑
n=1

ain ,

qiN−1
+

N−1∑
n=1

ain , ..., qi1 + ai1}

= max{
N∑
i=1

(bi + ai),

N∑
m=R′(N)

bjm + ciN +

N∑
m=1

aim ,

N∑
m=R′(N−1)

bjm + ciN−1
+

N−1∑
m=1

aim ,

...,

N∑
m=R′(1)

bjm + ci1 + ai1}

= max{
N∑
i=1

(bi + ai)} ∪ Q̂, (35)

where Q̂ = {
∑N
m=R′(n) bjm + cin +

∑n
m=1 aim |1 ≤ n ≤ N}

and L̂2N is the maximum among set {
∑N
i=1(bi + ai)} ∪ Q̂.

We consider an arbitrary element Q̂n in Q̂, it holds

Q̂n =

N∑
m=R′(n)

bjm + cin +

n∑
m=1

aim

=

n∑
m=1

aim + cin +

N∑
m=R′(n)

bjm

=

R(R′(n))∑
m=1

aim + cin +

N∑
m=R′(n)

bjm . (36)

Since R′(n) ∈ [1, N], Q̂n is also an element in Q. Similarly,
we can prove that any element in Q is an element in Q̂.
Therefore, it holds Q = Q̂ and L2N = L̂2N , i.e., the TS-
DU completion time under a schedule is equal to that under
its mirror schedule.

4) Reordering Distributing Sequence: To reorder distribut-
ing sequence, we first give the following lemma.

Lemma 4 : If the uploading sequence is fixed, the TS-DU com-
pletion time will be minimized by reordering the distributing
sequence as Oai1 , O

a
i2
, ...OaiN , such that qi1 ≥ qi2 ≥ ... ≥ qiN .

Proof. By Lemma 2, if the mirror schedule’s distributing
sequence ObjN , O

b
jN−1

, ...Obj1 is fixed, the completion time
under the mirror schedule will be minimized by reordering the
mirror schedule’s uploading sequence as OaiN , O

a
iN−1

, ...Oai1 ,
such that qiN ≤ qiN−1

≤ ... ≤ qi1 . By Lemma 3, the
TS-DU completion time under a schedule is equal to that
under its mirror schedule, so the reordering of the mirror
schedule’s uploading sequence is equal to minimize the TS-
DU completion time under the real schedule, i.e., reordering
the real schedule’s distributing sequence as Oai1 , O

a
i2
, ...OaiN ,

such that qi1 ≥ qi2 ≥ ... ≥ qiN .

Intuitively, as shown in Fig. 8, plot (b) shows the mirror
schedule of the real schedule in plot (a). The prepare time of
Oa4 , Oa2 , Oa3 and Oa1 in the mirror schedule is calculated as
q4 = b4 + c4, q2 = b4 + b2 + c2, q3 = b4 + b2 + b3 + c3, and
q1 = b4 + b2 + b3 + b1 + c1, respectively, satisfying q1 ≤ q4 ≤
q3 ≤ q2. According to Lemma 2, the uploading sequence in the
mirror schedule is reordered to Oa1 , O

a
4 , O

a
3 , O

a
2 to minimize

the completion time as shown in Fig. 8(d). Meanwhile, this

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 11

Algorithm 2 Magic Mirror Method Based Scheduling Strategy
(MMM)

Input: distributing time ai, training time ci, uploading time
bi, ∀i ∈ [1, N]

Output: A schedule G and its completion time L∗

1: Randomly generate a distributing sequence Oai1 , Oai2 , ...,
OaiN and a uploading sequence Obj1 , Obj2 ,..., ObjN

2: L∗ = +∞
3: while true do
4: Step 1: Reorder the uploading sequence.
5: for n ∈ {1, 2, ..., N} do
6: pin =

∑n
m=1 aim + cin

7: Reorder uploading sequence as Obj1 , O
b
j2
, ..., ObjN , such

that pj1 ≤ pj2 ≤ ... ≤ pjN
8: Step 2: Reorder the distributing sequence.
9: for n ∈ {N,N − 1, ..., 1} do

10: qjn =
∑N
m=n bjm + cjn

11: Reorder distributing sequence as Oai1 , O
a
i2
, ..., OaiN , such

that qi1 ≥ qi2 ≥ ... ≥ qiN
12: Step 3: Calculate the TS-DU completion time under

the current strategy.
13: lj0 =

∑N
i=1 ai

14: for n ∈ {1, 2, ..., N} do
15: ljn = max{ljn−1

, pjn}+ bjn
16: if ljN < L∗ then
17: L∗ = ljN
18: else
19: Return schedule G = (Oai1 , O

a
i2
, ..., OaiN , O

b
j1
, Obj2 ,

..., ObjN) and completion time L∗

is equivalent to minimizing the completion time of TS-DU
by reordering the distributing sequence in the real schedule to
Oa2 , O

a
3 , O

a
4 , O

a
1 as shown in Fig. 8(c).

Remark 1 : Note that the mirror schedule is not the real
scheduling procedure, but only used for virtual numerical
calculations. The key point of MMM is to minimize the TS-
DU completion time under the mirror schedule by reordering
the its uploading sequence (it is equivalent to reordering the
distributing sequence in the real schedule), then the TS-DU
completion time under the real schedule will also be magically
minimized.

5) The overall of MMM: We summarize our magic mirror
method (MMM) as shown in Alg. 2. We first randomly
generate a distributing sequence Oai1 , Oai2 , ..., OaiN and a
uploading sequence Obj1 , Obj2 ,..., ObjN . Next, we obtain the
scheduling by an iterative procedure, where each iteration
consists of three steps. In the first step (Lines 4-7), we reorder
the uploading sequence as described in Section V-B2. In the
second step (Lines 8-11), we reorder the distributing sequence
as described in Section V-B4. In the third step (Lines 12-19),
we calculate the completion time under the current schedule
lrjN and judge whether the algorithm has converged. If lrjN
is equal to the completion time L∗ at the last iteration, it
means that the algorithm will terminate and the final schedule
is returned. Otherwise, L∗ is set as ljN (Lines 16-19).

Theorem 2 : The proposed MMM algorithm in Alg. 2 can ob-
tain a local optimal schedule, i.e., the TS-DU completion time
cannot be reduced by unilaterally reordering the distributing
or gathering sequence.

Proof. Consider an arbitrary schedule with 2N coupled op-
erations, we can transform it into a sequence where the first
N are distributing operations and the last N are uploading
operations. In the iterative procedure, we alternately fix the
distributing/uploading sequence, and minimize the completion
time by reordering uploading/distributing sequence. In all the
above processes, the TS-DU completion time does not increase
according to Lemmas 1, 2 and 4, thus we can obtain a local
optimal schedule by performing Alg. 2 for finite iterations.

VI. DATA-AWARE CLUSTERING AND COMMUNICATION
OPTIMIZATION FOR DECENTRALIZED FEDERATED

LEARNING

Based on both the convergence analysis for multi-tier fed-
erated learning in Section IV and the proposed time-sharing
communication scheduling strategy in Section V, we define
the data-aware clustering and communication optimization for
decentralized federated learning.

A. Determine the Number of Tiers

The initial step involves ascertaining the number of tiers H ,
within the devised topology and the quantification of servers
in each respective tier. Specifically, we define the number of
servers in the hth-tier to conform to the relation:

Nh = b
√
Nh−1c, (37)

where h ∈ [1, H]. As an illustrative example, when con-
structing topology for 100 workers, the allocation of servers
across the 1st, 2nd, 3rd tiers would amount to 10, 3, and 1
servers, respectively. The square root function helps prevent
overloading in the lower tiers while guaranteeing resources
required in a given tier does not increase linearly but follows
a logarithmic pattern.

Subsequently, we proceed to cluster the nodes (workers or
servers) within the range of h from 1 to H . The clustering
process for each tier encompasses two steps. The initial step
entails partitioning Nh−1 nodes into Nh clusters, followed
by the subsequent selection of a server from each cluster to
serve as the aggregator for that particular cluster. However,
the effectiveness of the clustering strategy is intertwined with
the determination of the aggregator within each cluster. We
therefore commence by delineating the approach for aggrega-
tor determination within a cluster.

B. Determine the Aggregator for a Fractal Unit by MMM

Consider a cluster V = {v1, v2, ...vN} with N nodes. For
the construction of a fractal unit, the assignment of an aggrega-
tor becomes imperative. The algorithmic details are presented
formally in Alg. 3. Let aji denote the model distributing time
from vj to vi, and bji represent the model uploading time from
vi to vj . Additionally, ci is the model training time on vi.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 12

Algorithm 3 Determine the Aggregator for Cluster (DA)

Input: V = {v1, v2, ...vN}, A, B, C
Output: j∗, L∗

1: L∗ = +∞
2: for vj ∈ V do
3: for each vi ∈ V do
4: ai = aji ,bi = bji ,ci = ci
5: L = MMM(ai, bi, ci,∀i ∈ [1, N])(Alg. 2)
6: if L < L∗ then
7: j∗ = j
8: L∗ = L
9: return the Aggregator vj∗ and completion time L∗

Subsequently, the model distributing/uploading/training time
within cluster V can be succinctly expressed as

A =

a11 · · · aN1
...

. . .
...

a1N · · · aNN

 ,B =

 b11 · · · bN1
...

. . .
...

b1N · · · bNN

 ,C =

 c1
...
cN

 ,

respectively.
The iterative process entails evaluating each vj ∈ V as a

potential aggregator for cluster V (Line 2). Subsequently, the
MMM is employed to determine the scheduling strategy and
calculate the completion time L via Alg. 2 (Line 5). Following
this iterative exploration across all vj ∈ V , the aggregator
vj∗ is ultimately identified as the choice that minimizes the
completion time within cluster V .

C. Data-Aware Clustering for Decentralized FL

Let xjh−1,jh denote the indicator denoting whether server
vjh−1

belongs to cluster Vjh or not. If vjh serves as the ag-
gregator of server vhj

, xjh,jh+1
= 1; otherwise, xjj ,jh+1

= 0.
Our objective is to determine a clustering strategy denoted by
x = {xhj−1,hj

}h∈[1,H], geared towards enhancing decentral-
ized federated learning efficiency.

Recall Theorem 1, the convergence bound is give by
F(w0, T) =(1− µη)T (F (w0)− F (w∗))

+
1− (1− µη)T

2µ
(

∑
1≤h≤H

2hΦ(h) + 2H∆),

(38)
where ∆ is a constant related to the gradients within workers.
Φ(h) =

∑
jH−1∈JH

φjH−1

∑
jH−2∈JH−1

φjH−2
...
∑
jh−1∈Jh

φjh−1
Γjh−1

relates to the EMD Γjh−1
, signifying the data dis-

tributing of the (h−1)th-tier nodes. The subsequent corollary
can be intuitively deduced:

Corollary 1 : The degree of data Non-IID among clusters
positively impacts Γjh−1

for cluster Vjh , as well as Φ(h) and
the convergence bound F(w0, T). For clusters within the hth-
tier adhering to IID data, Γjh−1

= 0 and Φ(h) = 0, leading
to a reduction in the convergence bound F(w0, T).

Corollary 1 shows the potential to cluster nodes to approx-
imate an IID-like data distribution among clusters, thereby
curbing the convergence bound F(w0, T) and enhancing train-
ing efficacy. Motivated by this insight, we propose a data-
aware clustering algorithm that applies this principle at each

Algorithm 4 Muti-tier Data-Aware Clustering Algorithm for
Decentralized Federated Learning (FRACTAL)

Input: Data size Di, Dk
i , ∀vi ∈ V , ∀ck ∈ C; completion time

threshold Lmaxj , ∀sj ∈ S
Output: Final clustering strategy x

1: for h ∈ [1, h− 1] do
2: Φtemp = +∞
3: for jh−1 ∈ [

∑
0≤h′≤h−2Nh′+1,

∑
0≤h′≤h−1Nh′] do

4: for jh ∈ [
∑

0≤h′≤h−1Nh′ + 1,
∑

0≤h′≤hNh′] do
5: xjh−1,jh = 0
6: for jh−1 ∈ [

∑
0≤h′≤h−2Nh′+1,

∑
0≤h′≤h−1Nh′] do

7: for jh ∈ [
∑

0≤h′≤h−1Nh′ + 1,
∑

0≤h′≤hNh′] do
8: xjh−1,jh = 1
9: if DA(Vjh ,Ajh ,Bjh ,Cjh) > Lmaxjh

then
10: //Calculate the completion time by Alg. 3
11: xjh−1,jh = 0
12: continue
13: if Φ(h) < Φtemp then
14: Φtemp = Φ(h)
15: j∗h = jh
16: xjh−1,jh = 0
17: xjh−1,j∗h

= 1
18: for jh ∈ [

∑
0≤h′≤h−1Nh′ + 1,

∑
0≤h′≤hNh′] do

19: j∗, L∗ = DA(Vjh ,Ajh ,Bjh ,Cjh)
20: //Select vj∗ as the aggregator of Vjh by Alg. 3
21: vjh = vj∗

22: //Update Vjh ’s completion time by Alg. 3
23: cjh = L∗

24: return final clustering strategy x

tier of clustering. The details are formally described in Alg.
4.

For every tier h ∈ [1, H − 1], we greedily determine the al-
location of each node to clusters one by one, so as to minimize
the current Φ(h). The process is initiated by configuring the
states of the (h− 1)th-tier nodes, with xjh−1,jh = 0 (Lines 3-
5). Subsequently, an attempt is made to assign vjh−1

to each
hth-tier cluster, i.e., setting xjh−1,jh = 1, and subsequently
calculating the current Φ(h) value. In detail, let Ajh , Bjh

and Cjh denote the model distributing/uploading/training time
within cluster Vjh , respectively. On one hand, if the completion
time within cluster Vjh , i.e., DA(Vjh ,Ajh ,Bjh ,Cjh), surpass-
es the threshold Lmaxjh

, then node vjh−1
remains unallocated

to cluster Vjh , i.e., resetting xi,j = 0 (Lines 9-12). On the
other hand, after traversing all clusters within the hth-tier, node
vjh−1

is assigned to the cluster Vj∗h that minimizes the Φ(h)
(Line 13-17). Once all (h− 1)th-tier nodes are clustered, the
aggregator of each cluster is accordingly determined, and the
completion time on vjh is set as the completion time of cluster
Vjh by Alg. 3,i.e., cjh = L∗ (Lines 18-23). Subsequently,
the node clustering process for the hth-tier commences. The
algorithm terminates upon the H-tier topology is constructed.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 13

VII. PERFORMANCE EVALUATION

A. System Setup

We implement a large-scale decentralized federated learning
system using PySyft (version 0.2.9) [41], a Python library for
privacy-preserving deep learning under the PyTorch frame-
work. PySyft allows the virtual worker creation for FL train-
ing, where each worker simulates an individual machine and
trains a local model on its own dataset. We simulate a typical
edge computing system with 100 workers randomly deployed
in a 50m×50m region. Our experimental evaluations are con-
ducted on an AMAX deep learning workstation with an 8-core
Intel Xeon CPU (E5-2620v4) and 4 NVIDIA GeForce RTX
2080Ti GPUs with 11GB GDDR6. The system environment
is Ubuntu 18.04, CUDA v10.0, and cuDNN v7.5.0.

1) Simulation of Edge Heterogeneity: We introduce a s-
caling factor κi for each worker vi, which is a random float
number drawn uniformly from [1,10], to simulate the edge
heterogeneity. ĉi denote the actual local training time on
worker vi. Since we deploy the virtual workers v1-v100 on
the same servers for experimentation, their local training times
are roughly equal, i.e., ĉ1 ≈ ĉ2 ≈ ... ≈ ĉ100. Then, we set the
local training time on worker vi as ci = κiĉi, which means that
after completing local training, vi idles for a period between
0 and 9 times of ĉi.

For the model delivering among workers, the transmission
rate from vi to vj can be given by the Shannon capacity [42],
ri,j = Wi,j log2(1+

pui hi,j

σ2), where pi denotes the transmission
power of worker vi, set as 100mWatts [43], and σ2 denotes
the noise power, set as -100dBm [43]. Wi,j represents the
bandwidth assign for model delivering from vi to vj . Wi =∑
vj∈V(Wi,j +Wj,i) is the total available bandwidth at each

worker vi, set as 10 MHz. hi,j denotes the channel gain from
worker vi to vj , modeled by the pass-loss hi,j = h0d

−4
i,j model

[44], where h0 = −40dB [42] is the path-loss constant and
di,j is the distance between worker vi and aggregator sj . Let ξ
denote the model size. Consequently, the model transmission
time from worker vi to aggregator sj can be calculated by
Li,j = ξ

ri,j
.

2) Models and Datasets: We train two classical models
(i.e., LR [45], AlexNet [46]) and on datasets MNIST [47] and
CIFAR-10 [48]. MNIST consists of 60,000 handwritten digits
for training and 10,000 for testing, and owns ten types of labels
from "1" to "9", while CIFAR-10 includes 50,000 images for
training and 10,000 for testing, and has ten different types of
objects. We adopt the same mini-batch size (i.e., 64) during
FL training.

To implement the Non-IID data among workers, we adopt
the label skewed method to partition dataset [49] [50]. Specif-
ically, the data in MNIST labeled as ‘0’ are distributed to
workers v1-v10, the data labeled as ‘1’ are distributed to
workers v11-v20,..., and the data labeled as ‘9’ are distributed
to workers v91-v100.

3) Benchmarks and Performance Metrics: We compare our
FRACTAL algorithm against three other typical FL solutions.

• FedAvg [8]: The classic CFL algorithm that all workers
participating in each round of global aggregation. We as-

 2

 3

 4

 5

 6

 0 1 2 3

C
o

m
p

le
ti

o
n

 T
im

e
o

f
T

S
-D

U
 (

s)

Iterations of MMM algorithm

N=20
N=15
N=10
N=5

Fig. 9: Completion Time of a
single Round vs. Iterations.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

C
o

m
p

le
ti

o
n

 T
im

e
o

f
T

S
-D

U
 (

s)

No. of Workers within Fractal Unit

Random
FS

Up-Only
MMM

Optimal

Fig. 10: Comparison with oth-
er communication solutions.

sume that the most centered worker acts as the parameter
server in our simulation environment.

• MATCHA [17]: A DFL solution with partially connected
topology, where the original network topology is split
into disjoint subgraphs and communicates on different
subgraphs in different training rounds.

• TiFL [26]: A DFL solution with two-tier hierarchical
topology, where each worker is clustered to the aggrega-
tor with the shortest communication time.

For one round model updating within a fractal unit, we
first compare our MMM algorithm with other communication
solutions:
• Frequency-sharing (FS) [28] [29]: Each worker is allo-

cated with static bandwidth and the bandwidth allocation
remains unchanged during the model updating process.

• Random: A time-sharing scheduling algorithm where the
models are distributed/uploaded in random order.

• Up-Only [30]: A time-sharing scheduling algorithm,
where the distributing sequence is in random order, and
the uploading sequence is sorted as Step 1 in Alg. 2.

• Optimal: The TS-DU process is formalized as a nonlin-
ear integer programming problem, and can be solving to
obtain a optimal schedule by CVXPY package [51].

To evaluate the training performance, we adopt three perfor-
mance metrics. 1) Loss Function reflects the training process
of the model and whether convergence has been achieved.
2) Accuracy is the most common performance metric in
classification problems, which is defined as the proportion of
right data classified by the model to all test data. 3) Training
Time is adopted to measure the training speed.

B. Evaluation Results

1) Comparison of Communication Solutions: Fig. 9 shows
the change of the completion time of one TS-DU process in
the iterative procedure of our MMM algorithm. As is shown,
MMM can converge in two iterations for different number N
(from 5 to 20) of nodes within a fractal unit.

Fig. 10 shows the completion time of one TS-DU process of
different solutions FS, Random, Up-Only, MMM and Optimal
when the number of nodes within a fractal unit increases from
1 to 30. We test 1000 times and average to smooth the curve.
As shown, our MMM algorithm can always achieve almost
the same completion time as Optimal. When the number of
nodes is between 5 and 15, MMM can greatly reduce the
completion time compared with Random, FS and Up-Only.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 14

 0

 1

 2

 3

 4

 5

 6

 7

100 200 300 400 500 600 700 800 900 1000

MMM

0.6

1.3
1.91

2.60
3.21

3.81

4.61
5.15

5.82
6.35

Number of Nodes

 1

 10

 100

 1000

 10000

 100000

5 10 15 20 25 30 35 40 45 50

R
u

n
n

in
g

 t
im

e
 (

s)
Optimal

1.3 1.9
4.11

13.05

40.85
121.82

461.23
1345.43

3831.31

13314.32
R

u
n

n
in

g
 t

im
e

 (
m

s)

Fig. 11: Symmetry of the mirroring schedule.

For example, when N=10, the completion time of Random,
FS, Up-Only, MMM and Optimal is 4.49s, 3.43s, 3.01s, 2.44s
and 2.44s, respectively. MMM can reduce the completion time
by about 45.7%, 28.9% and 18.9% compared with Random,
FS and Up-Only. Whereas, when the number of node exceeds
20, the performance of Up-Only is close to that of MMM in
practice. This is because the more nodes in the cluster, the
better the parallelism of model training of MMM and Up-
Only, and the completion time of both algorithms will tend to
the sum of all nodes’ model distributing and uploading time.
For example, when X=30, the intra-cluster aggregation time
of Random, FS, Up-Only, MMM and Optimal is 9.85s, 8.13s,
6.84s, 6.84s and 6.84s, respectively. MMM and Up-Only can
reduce the completion time by about 16.1% compared with FS.
The average gap between the obtained local optimal strategy
and the global optimal is less than 0.1%. Furthermore, we
observed that among the results of 1000 tests, 912 propose
strategies by MMM are also global optimal.

Fig. 11 shows the running time of our MMM algorithm
when the number of nodes in a fractal unit ranges from
100 to 1000. We observe that even in a fractal unit with
amounts of nodes, MMM can still obtain scheduling strategy in
milliseconds, and the algorithm running time increases evenly
with the increase of the number of nodes in the fractal unit.
For example, when there are 1000 nodes in the system, the
scheduling strategy can be obtained in 6.35ms by MMM. As
a comparison, we evaluate the running time of Optimal when
the number of nodes ranges from 5 to 50. We observe that
the algorithm running time of Optimal increases dramatically
with the increase of the number of nodes. For example, even
only 50 nodes in the system, the running time of Optimal has
reached an unacceptable 13314.32s.

The experimental results in Fig. 9-11 show that our MMM
algorithm can achieve near-optimal performance in a short and
linear time and is practical for the topology construction in
FRACTAL.

2) The Chosen of Learning Rate: In this section, we train
AlexNet on MNIST use our FRACTAL to obtain the suitable
learning rate η. Fig. 12 shows the effect of different learning
rates on the training performance. A low learning rate of 0.001
leads to slow convergence, reaching only 72.1% accuracy after
5000s of training. A moderate learning rate of 0.01 results in

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5

L
o
ss

Time (×10
3
)

η=0.1
η=0.01

η=0.001

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

A
cc

u
ra

cy

Time (×10
3
)

η=0.1
η=0.01

η=0.001

Fig. 12: The Comparison of Different Learning Rates (AlexNet
on MNIST). Left: Loss; Right: Accuracy.

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5

L
o
ss

Round (×10
2
)

FRACTAL
MATCHA

TiFL
FedAvg

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

A
cc

u
ra

cy

Time (×10
3
)

FRACTAL
MATCHA

TiFL
FedAvg

Fig. 13: Loss/Accuracy vs. Time (LR on MNIST). Left: Loss;
Right: Accuracy.

faster and more stable convergence, achieving 91.3% accuracy
after the same training time. However, a high learning rate of
0.1 causes the loss and accuracy curves to fluctuate wildly
and prevents the model from converging. The accuracy curve
oscillates between 78.5% and 92.1% after 5000s of training.
Therefore, we choose η = 0.01 as the learning rate for the
subsequent experiment.

3) Comparison of Federated Learning Solutions: In this
section, we compare our FRACTAL with other typical FL
solutions: FedAvg, MATCHA and TiFL. For model updates
within the fractal units, we employ the MMM algorithm in
our FRACTAL, while deploying the most commonly used FS
communication for other benchmarks.

TABLE II: The impact of the clustering methods on EMD

Clustering
methods

Original TiFL FRACTAL

Γ(0) Γ(1) Γ(1) Γ(2)

EMD 1.8 0.69 0.19 0.102
Table II shows the average EMD of nodes on different tiers

after applying TiFL and FRACTAL clustering methods. We use
Γ(j) to denote the average EMD of nodes on the jth tier.
As shown in Table II, the EMD of the 0th tier is Γ(0) =
| 110 − 1|+ | 110 −0|×9 = 1.8, since each worker has data with
the same label. After the clustering the TiFL, the EMD of the
1th tier is reduced to 0.69. However, by applying our proposed
FRACTAL, the EMD of the 1th tier is further reduced to 0.19,
and that of the 2th tier is only 0.102. This demonstrates that
FRACTAL can achieve a more balanced data distribution among
clusters on each tier, which is closer to IID.

Figs. 13-15 show that FRACTAL can greatly accelerate FL
at decentralized edge network compare with other solutions.
For example, in Fig. 13, after 5000s of training, FRACTAL
attains a stable training accuracy of 83.5%, outperforming
MATCHA, TiFL, and FedAvg, which reach 73.3%, 78.1%,
and 71.6%, respectively. The training time to achieve 70%

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 15

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5

L
o
ss

Time (×10
3
)

FRACTAL
MATCHA

TiFL
FedAvg

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

A
cc

u
ra

cy

Time (×10
3
)

FRACTAL
MATCHA

TiFL
FedAvg

Fig. 14: Loss/Accuracy vs. Time (AlexNet on MNIST). Left:
Loss; Right: Accuracy.

 1.2

 1.5

 1.8

 2.1

 2.4

 0 1 2 3 4 5

L
o
ss

Time (×10
3
)

FRACTAL
MATCHA

TiFL
FedAvg

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5

A
cc

u
ra

cy

Time (×10
3
)

FRACTAL
MATCHA

TiFL
FedAvg

Fig. 15: Loss/Accuracy vs. Time (AlexNet on CIFAR-10).
Left: Loss; Right: Accuracy.

accuracy is 1140s, 2733s, 2220s and 4112s for FRACTAL,
MATCHA, TiFL, and FedAvg, respectively. FRACTAL can
reduce the training time by about 58.3%, 48.6% and 72.3%
compared with MATCHA, TiFL and FedAvg, respectively. The
superiority of FRACTAL over TiFL and FedAvg arises from its
utilization of a multi-tier topology, distributing communication
load across more nodes and consequently accelerating the
training process. Additionally, note that during the training
process, the loss and accuracy curves of MATCHA jitter more
violently compared with that of other solutions. This volatility
is attributed to the high-variance problem among workers,
particularly prominent in sparse topologies for MATCHA,
which is aggravated by non-IID data distribution. In contrast,
FRACTAL mitigates this problem by constructing hierarchical
topology while promoting data distribution among clusters
close to IID, resulting in improved stability during training.

VIII. CONCLUSION

In this paper, we have proposed a novel data-aware cluster-
ing algorithm, called FRACTAL, to construct a multi-tier hierar-
chical topology for decentralized federated learning. We have
theoretically explored the quantitative relationship between the
convergence bound of multi-tier FL and the data distribution
among each-tier servers. To address edge heterogeneity and
communication resource constraint, within each fractal unit,
we have proposed a time-sharing communication scheduling
algorithm, called magic mirror method (MMM), to determine
the order for model distributing and uploading, and proved
its convergence. The extensive experimental results show that
FRACTAL can significantly accelerate the DFL model training
compared with the state-of-the-art solutions.

REFERENCES

[1] A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensor-
based systems for health monitoring and prognosis,” IEEE Transactions

on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 40, no. 1, pp. 1–12, 2009.

[2] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones.” in
Esann, 2013.

[3] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Towards
an intelligent edge: Wireless communication meets machine learning,”
arXiv preprint arXiv:1809.00343, 2018.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[5] H. B. McMahan and D. Ramage.,
“http://www.googblogs.com/federated-learning-collaborative-machine-
learning-without-centralized-training-data/,” Google, 2017.

[6] X. Wei, Q. Li, Y. Liu, H. Yu, T. Chen, and Q. Yang, “Multi-agent
visualization for explaining federated learning,” in Proceedings of the
28th International Joint Conference on Artificial Intelligence. AAAI
Press, 2019, pp. 6572–6574.

[7] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in ICC 2019-2019 IEEE
International Conference on Communications (ICC). IEEE, 2019, pp.
1–7.

[8] B. McMahan, E. Moore, D. Ramage, S. Hampson, and A. y. B. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” AISTATS, pp. 1273–1282, 2017.

[9] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in 11th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14), 2014, pp.
583–598.

[10] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[11] Y. Liao, Y. Xu, H. Xu, L. Wang, and C. Qian, “Adaptive configuration
for heterogeneous participants in decentralized federated learning,” in
IEEE INFOCOM 2023-IEEE Conference on Computer Communications.
IEEE, 2023, pp. 1–10.

[12] Z. Tang, S. Shi, B. Li, and X. Chu, “Gossipfl: A decentralized federated
learning framework with sparsified and adaptive communication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 34, no. 3, pp.
909–922, 2022.

[13] M. Chen, Y. Xu, H. Xu, and L. Huang, “Enhancing decentralized
federated learning for non-iid data on heterogeneous devices,” in 2023
IEEE 39th International Conference on Data Engineering (ICDE).
IEEE, 2023, pp. 2289–2302.

[14] E. T. M. Beltrán, M. Q. Pérez, P. M. S. Sánchez, S. L. Bernal,
G. Bovet, M. G. Pérez, G. M. Pérez, and A. H. Celdrán, “Decentralized
federated learning: Fundamentals, state-of-the-art, frameworks, trends,
and challenges,” arXiv preprint arXiv:2211.08413, 2022.

[15] A. G. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C. Wachinger,
“Braintorrent: A peer-to-peer environment for decentralized federated
learning,” arXiv preprint arXiv:1905.06731, 2019.

[16] J. Wang and G. Joshi, “Adaptive communication strategies to achieve
the best error-runtime trade-off in local-update sgd,” arXiv: Learning,
2018.

[17] J. Wang, A. K. Sahu, Z. Yang, G. Joshi, and S. Kar, “MATCHA: Speed-
ing Up Decentralized SGD via Matching Decomposition Sampling,” in
2019 Sixth Indian Control Conference (ICC), 2019, pp. 299–300.

[18] H. Xu, M. Chen, Z. Meng, Y. Xu, L. Wang, and C. Qiao, “Decentralized
machine learning through experience-driven method in edge networks,”
IEEE Journal on Selected Areas in Communications, vol. 40, no. 2, pp.
515–531, 2022.

[19] J.-w. Lee, J. Oh, S. Lim, S.-Y. Yun, and J.-G. Lee, “Tornadoaggregate:
Accurate and scalable federated learning via the ring-based architecture,”
arXiv preprint arXiv:2012.03214, 2020.

[20] Y. Li, W. Liang, J. Li, X. Cheng, D. Yu, A. Y. Zomaya, and S. Guo,
“Energy-aware, device-to-device assisted federated learning in edge
computing,” IEEE Transactions on Parallel and Distributed Systems,
2023.

[21] A. Bellet, A.-M. Kermarrec, and E. Lavoie, “D-cliques: Compensating
for data heterogeneity with topology in decentralized federated learning,”
in 2022 41st International Symposium on Reliable Distributed Systems
(SRDS). IEEE, 2022, pp. 1–11.

[22] M. S. H. Abad, E. Ozfatura, D. Gunduz, and O. Ercetin, “Hierarchical
federated learning across heterogeneous cellular networks,” in ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2020, pp. 8866–8870.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

MA et al.: FRACTAL: DATA-AWARE CLUSTERING AND COMMUNICATION OPTIMIZATION FOR DECENTRALIZED FEDERATED LEARNING 16

[23] Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y. Zhao, “Resource-
efficient federated learning with hierarchical aggregation in edge com-
puting,” in IEEE INFOCOM 2021-IEEE Conference on Computer
Communications. IEEE, 2021, pp. 1–10.

[24] Z. Zhong, Y. Zhou, D. Wu, X. Chen, M. Chen, C. Li, and Q. Z.
Sheng, “P-FedAvg: Parallelizing Federated Learning with Theoretical
Guarantees,” in IEEE INFOCOM 2021-IEEE Conference on Computer
Communications. IEEE, 2021, pp. 1–10.

[25] Y. Sun, J. Shao, Y. Mao, J. H. Wang, and J. Zhang, “Semi-decentralized
federated edge learning for fast convergence on non-iid data,” in 2022
IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2022, pp. 1898–1903.

[26] Z. Chai, A. Ali, S. Zawad, S. Truex, A. Anwar, N. Baracaldo, Y. Zhou,
H. Ludwig, F. Yan, and Y. Cheng, “TiFL: A Tier-based Federated
Learning System,” in Proceedings of the 29th International Symposium
on High-Performance Parallel and Distributed Computing, 2020, pp.
125–136.

[27] N. Mhaisen, A. Awad, A. Mohamed, A. Erbad, and M. Guizani,
“Optimal user-edge assignment in hierarchical federated learning based
on statistical properties and network topology constraints,” IEEE Trans-
actions on Network Science and Engineering, pp. 1–1, 2021.

[28] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Convergence time optimiza-
tion for federated learning over wireless networks,” IEEE Transactions
on Wireless Communications, vol. 20, no. 4, pp. 2457–2471, 2021.

[29] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy
efficient federated learning over wireless communication networks,”
IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp.
1935–1949, 2021.

[30] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective
federated learning in mobile edge networks,” IEEE Journal on Selected
Areas in Communications, vol. 39, no. 12, pp. 3606–3621, 2021.

[31] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications, 2019, pp. 1387–1395.

[32] X. Mo and J. Xu, “Energy-efficient federated edge learning with joint
communication and computation design,” Journal of Communications
and Information Networks, vol. 6, no. 2, pp. 110–124, 2021.

[33] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE transactions on wireless communications,
vol. 19, no. 3, pp. 2022–2035, 2020.

[34] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for
low-latency federated edge learning,” IEEE Transactions on Wireless
Communications, vol. 19, no. 1, pp. 491–506, 2019.

[35] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” IEEE Transactions
on Signal Processing, vol. 68, pp. 2155–2169, 2020.

[36] X. Cao, G. Zhu, J. Xu, Z. Wang, and S. Cui, “Optimized power
control design for over-the-air federated edge learning,” IEEE Journal
on Selected Areas in Communications, vol. 40, no. 1, pp. 342–358, 2021.

[37] R. A. Dunne and N. A. Campbell, “On the pairing of the softmax
activation and cross-entropy penalty functions and the derivation of the
softmax activation function,” in Proc. 8th Aust. Conf. on the Neural
Networks, Melbourne, vol. 181. Citeseer, 1997, p. 185.

[38] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[39] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

[40] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[41] A. Ziller, A. Trask, A. Lopardo, B. Szymkow, B. Wagner, E. Bluemke, J.-
M. Nounahon, J. Passerat-Palmbach, K. Prakash, N. Rose et al., “Pysyft:
A library for easy federated learning,” in Federated Learning Systems.
Springer, 2021, pp. 111–139.

[42] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE
Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–
3605, 2016.

[43] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 4, pp. 974–983, 2014.

[44] T. S. Rappaport et al., Wireless communications: principles and practice.
prentice hall PTR New Jersey, 1996, vol. 2.

[45] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic
regression. John Wiley & Sons, 2013, vol. 398.

[46] A. Krizhevsky, I. Sutskever, and E. G. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, pp. 84–90,
2017.

[47] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[48] A. Krizhevsky, G. Hinton et al., Learning multiple layers of features
from tiny images. Citeseer, 2009.

[49] Q. Ma, Y. Xu, H. Xu, Z. Jiang, L. Huang, and H. Huang, “FedSA: A
Semi-Asynchronous Federated Learning Mechanism in Heterogeneous
Edge Computing,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 12, pp. 3654–3672, 2021.

[50] K. Hsieh, A. Phanishayee, O. Mutlu, and P. Gibbons, “The non-iid
data quagmire of decentralized machine learning,” in International
Conference on Machine Learning. PMLR, 2020, pp. 4387–4398.

[51] S. Diamond and S. Boyd, “CVXPY: A python-embedded modeling
language for convex optimization,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 2909–2913, 2016.

Qianpiao Ma received his Ph.D. degree in computer
software and theory from the University of Science
and Technology of China in 2022. Prior to that, he
received his B.S. degree in computer science from
the University of Science and Technology of China
in 2014. He is currently a post-doctoral researcher at
Purple Mountain Laboratories. His primary research
interests include federated learning, mobile edge
computing and distributed machine learning.

jianchun Liu received his Ph.D. degree in computer
software and theory from the University of Science
and Technology of China in 2022. He is currently
an associate researcher in the School of Computer
Science and Technology, University of Science and
Technology of China. His primary research interests
include federated learning, mobile edge computing
and distributed machine learning.

Hongli Xu (Member, IEEE) received his Ph.D.
degree in computer software and theory from the
University of Science and Technology of China,
China, in 2007. He is a professor at the School
of Computer Science and Technology, University of
Science and Technology of China. He has won the
best paper awards in several famous conferences. He
has published more than 100 papers in famous jour-
nals and conferences. His primary research interest
is software defined networks, edge computing and
Internet of Thing.

Qingmin Jia is currently a researcher at Purple
Mountain Laboratories, Nanjing, China. He received
the B.S. degree in communication engineering from
Qingdao University of Technology, Qingdao, China,
in 2014, and received the Ph.D. degree in informa-
tion and communication engineering from Beijing
University of Posts and Telecommunications (BUP-
T), Beijing, China, in 2019. His current research
interests include Edge Intelligence and Industrial
Internet of Things.

Renchao Xie (Senior Member, IEEE) received the
Ph.D. degree in electrical engineering from the Bei-
jing University of Posts and Telecommunications
(BUPT), Beijing, China, in 2012. He is currently
a Professor with the school of information and
communication engineering, BUPT. His research in-
terests include edge computing, information centric
networking, and Industrial Internet of Things.

This article has been accepted for publication in IEEE Transactions on Big Data. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TBDATA.2024.3403381

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on May 29,2024 at 09:33:57 UTC from IEEE Xplore. Restrictions apply.

