
Journal of Systems Architecture 167 (2025) 103469

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Dynamic task offloading and resource allocation for energy-harvesting

end–edge–cloud computing systemsI

Xiaozhu Song a, Qianpiao Ma a, Zheng Gan b, Liying Li a, Peijin Cong a, Junlong Zhou a ,∗

a School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
b Guangxi Key Laboratory of Digital Infrastructure, Guangxi Zhuang Autonomous Region Information Center, Nanning, 530000, China

A R T I C L E I N F O

Keywords:
End–edge–cloud computing
Energy harvesting systems
Task offloading
Resource allocation
Execution delay
Reliability

 A B S T R A C T

In end–edge–cloud (EEC) computing, end devices (EDs) offload compute-intensive tasks to nearby edge servers
or the cloud server to alleviate processing burdens and enable a flexible computing architecture. However,
resource constraints and dynamic environments pose significant challenges for EEC task offloading and resource
allocation, including real-time requirements, unreliable task execution, and limited battery energy, especially
in energy harvesting (EH) systems, in which battery energy remains unstable due to its inherent fluctuations.
Existing task offloading and resource allocation approaches often fail to address these challenges holistically,
leading to degraded performance and potential task execution failures. In this paper, we propose a novel task
offloading and resource allocation method for EH EEC computing, aiming to optimize long-term performance
by minimizing delay and energy consumption while ensuring task execution reliability and battery energy
stability. Specifically, we formulate task offloading and resource allocation as a cost optimization problem
under constraints such as ED capacity, task reliability, and energy consumption. To solve this problem, we
first leverage Lyapunov optimization to decouple the original time-dependent problem. Then we derive optimal
closed-form solutions for computation and transmission power resource allocation. Based on these solutions,
we propose a multiple discrete particle swarm optimization algorithm to determine task offloading decision.
Extensive experiments demonstrate the superiority of our method in balancing delay, execution reliability, and
energy stability under varying conditions.
1. Introduction

With the development of the Internet of Things (IoT), massive
amounts of data are generated by IoT devices. According to IDC’s
forecast, the generated data will reach 159.2 ZB in 2024 and is expected
to more than double by 2028, reaching 384.6 ZB, with a compound
annual growth rate of 24.4% [1]. End devices (EDs) have become an
indispensable part of people’s daily lives and are expected to process
the rapidly increasing data. However, EDs typically use processors and
batteries with limited capacity [2]. Processing all generated data on
these devices can be time- and energy-consuming. To this end, task
offloading technology is proposed to alleviate the processing burden
on EDs, where the compute-intensive tasks are offloaded to powerful
remote computing platforms for processing [3].

I This work was supported in part by the National Natural Science Foundation of China under Grants 62302221, 62302216, 62172224, 62402537, in part by
the Natural Science Foundation of Jiangsu Province under Grants BK20230913, BK20230912, BK20220138, in part by the Fundamental Research Funds for the
Central Universities under Grants 30922010318, 30924010815, 30925010408, 30925010515, and in part by the Open Project Program of Guangxi Key Laboratory
of Digital Infrastructure (Grant Number: GXDIOP2024006).
∗ Corresponding author.
E-mail addresses: songxiaozhu@njust.edu.cn (X. Song), maqianpiao@njust.edu.cn (Q. Ma), ganzheng@gxi.gov.cn (G. Zheng), liyingli@njust.edu.cn (L. Li),

cpj@njust.edu.cn (P. Cong), jlzhou@njust.edu.cn (J. Zhou).

Currently, task offloading solutions can be categorized into three
main types. The most traditional solution for task offloading is based on
cloud computing, i.e., end-cloud offloading, where tasks are offloaded
to the cloud server for remote execution. The powerful processing
capabilities of cloud servers enable them to execute offloaded tasks
rapidly [4]. However, the distance between cloud servers and EDs
may cause network congestion and increased latency, negatively af-
fecting the execution of tasks for real-time applications [5]. To address
these issues, end-edge offloading [6,7] which is developed from edge
computing, has emerged as an alternative solution, leveraging nearby
edge servers for task execution. This proximity enables shorter re-
sponse times than the end-cloud offloading solution, making it ideal
for applications requiring real-time task processing. Nevertheless, the
computation resources of edge servers are relatively limited [8], which
https://doi.org/10.1016/j.sysarc.2025.103469
Received 24 January 2025; Received in revised form 17 April 2025; Accepted 21 M
vailable online 7 June 2025
383-7621/© 2025 Elsevier B.V. All rights are reserved, including those for text and
ay 2025

 data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/sysarc
https://www.elsevier.com/locate/sysarc
https://orcid.org/0000-0002-7734-4077
mailto:songxiaozhu@njust.edu.cn
mailto:maqianpiao@njust.edu.cn
mailto:ganzheng@gxi.gov.cn
mailto:liyingli@njust.edu.cn
mailto:cpj@njust.edu.cn
mailto:jlzhou@njust.edu.cn
https://doi.org/10.1016/j.sysarc.2025.103469
https://doi.org/10.1016/j.sysarc.2025.103469

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
Table 1
Comparison of approaches in EEC.
 Approach Optimize execution

delay
Optimize energy
consumption

Consider dynamic
environments

Consider
reliability

Consider Battery
Energy Stability

 WBS [22] ✓
 MaOPPC [23] ✓
 CCORAM [24] ✓ ✓
 IOR [25] ✓ ✓
 GDTO [26] ✓ ✓
 DMQTO [27] ✓ ✓ ✓
 SMBO [28] ✓ ✓ ✓
 TPDRTO [29] ✓ ✓ ✓
 TSDA [30] ✓ ✓ ✓
 EAP-OPT [31] ✓ ✓
 TOLERANCER [32] ✓ ✓
 RES [33] ✓ ✓
 OAPCR [34] ✓ ✓
 Ours ✓ ✓ ✓ ✓ ✓
can lead to long execution times for compute-intensive tasks. End–
edge–cloud (EEC) offloading [4] combines the benefits of both cloud
computing and edge computing by distributing tasks among EDs, edge
servers, and the cloud server. This collaboration establishes a flexible
framework, meeting the varying task executing requirements of diverse
applications, such as delay and energy constraints.

However, there are still some challenges in existing EEC offloading
research.

• Real-time Requirement: Many ED’s applications (e.g., autono
mous driving and augmented reality) typically have stringent
timing constraints that require them to be completed before their
deadlines. In the EEC system, task offloading needs to guarantee
low latency to ensure the real-time requirement [9–11]. How-
ever, the distributed and multi-tiered nature of EEC architecture
makes it difficult to achieve consistently low delay, since data
traverses multiple nodes, each with varying network conditions
and workloads.

• Unreliable Task Execution: In the dynamic environments of
EEC computing, task execution reliability is frequently impacted
by factors like resource competition and performance fluctua-
tions [12–14]. This often decreases the probability of successfully
completing tasks without suffering transient failures, especially
during peak usage periods.

• Limited Battery Energy: EDs such as robots, cameras, and
portable weather stations typically rely on batteries with lim-
ited capacity for power, leading to potential energy shortages
during periods of high-demand operation [15–18]. Some studies
focus on energy harvesting (EH) techniques to capture renewable
resources from the environment and convert them into battery
energy [19–21]. However, the inherent randomness in EH can
cause fluctuations in the ED’s energy supply. For example, robots
may suspend their mission execution in low energy conditions,
which reduces task execution efficiency and potentially shortens
battery lifespan.

In recent years, a wide range of approaches for EEC computing
have been proposed to address the above challenges. A comprehensive
comparison of these approaches is summarized in Table 1. For exam-
ple, [22,23] explore the collaborative task offloading methods aimed at
reducing delays, while [24,25] propose methods that jointly optimize
delay and energy consumption. However, these methods are primarily
designed for static scenarios and face significant limitations in dy-
namic scenarios. To address this, [27–29] propose offloading methods
tailored for dynamic scenarios. Although these methods are adaptive
to dynamic environments, they ignore task execution reliability, po-
tentially leading to slow responses and incomplete execution. Only a
few studies [31–34] address reliability issues in dynamic scenarios to
ensure reliable task execution. However, these studies mainly focus on
2
enhancing task execution reliability and do not adequately consider
the critical factors related to task offloading, such as delay and energy
consumption.

Unlike previous studies, this paper solves the delay, energy, and reli-
ability concerns in EEC computing systems simultaneously. Specifically,
we propose a dynamic task offloading and resource allocation method
for energy harvesting end–edge–cloud (EH EEC) computing systems,
aiming to optimize the long-term performance (i.e., minimizing delay
and energy consumption) while ensuring task execution reliability and
battery energy stability. The main contributions of this paper are
summarized as follows.

• We formulate the task offloading problem to minimize cost (in-
cluding task execution delay and dropping penalty) within the
EH-EEC architecture, subject to constraints such as ED capacity,
task execution reliability, and energy consumption, to meet the
real-time requirement, ensure reliable task execution, as well as
manage the limited and unstable battery energy.

• We design an efficient algorithm to solve the formulated task
offloading problem. Specifically, we first decompose the original
time-coupled problem by leveraging the Lyapunov optimization
to address unstable battery energy in the EH architecture. Next,
we derive the optimal closed-form solutions for the resource
allocation of EDs and edge servers, including computation and
transmission power. Based on these solutions, we propose a mul-
tiple discrete particle swarm optimization (MDPSO) algorithm to
determine the task offloading strategy.

• We validate the efficacy of the proposed method through ex-
tensive simulation experiments. The experimental results, with
varying parameters (e.g., task generation probabilities and control
parameters), show the superiority of the proposed method in
terms of balancing delay, task execution reliability, and battery
energy stability.

We organize this paper as follows. Section 2 reviews the related
work. Section 3 introduces the specific system models and defines the
optimization problem based on the models. Section 4 describes our
proposed dynamic task offloading and resource allocation algorithms
in detail. Section 5 conducts simulation experiments to evaluate the
performance of the proposed algorithm from various aspects, followed
by the concluding remarks in Section 6.

2. Related work

This section classifies related work on task offloading and resource
allocation into two categories: static and dynamic, all within the con-
text of EEC computing.

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
2.1. Static task offloading and resource allocation in EEC computing

EEC computing is an architecture that effectively integrates edge
and cloud computing, providing enhanced flexibility and effectively
addressing diverse user requirements. Most research on EEC comput-
ing focuses on optimizing task offloading and resource allocation by
reducing delay and minimizing energy consumption. For example,
Gao et al. [22] proposed an auction-based virtual machine allocation
mechanism to address the resource allocation problem for deadline-
sensitive tasks. Hu et al. [23] introduced a knowledge-mining-based
multi-objective evolutionary algorithm to reduce the delay in content
popularity prediction tasks. Zhou et al. [24] proposed a joint optimiza-
tion method for computation offloading and service caching in an edge
computing-based smart grid, aiming to minimize the task execution
time and energy consumption. Xiao et al. [25] developed an itera-
tive task offloading method to minimize energy consumption under
given delay constraints. Chen et al. [26] designed a game-based de-
centralized approach that maximizes the quality of user experience by
optimizing resource allocation. However, these methods often assume
static conditions, making them less effective in adapting to dynamic
scenarios.

2.2. Dynamic task offloading and resource allocation in EEC computing

To address the various challenges posed by dynamic environments,
several studies have designed task offloading and resource allocation
methods for this scenario. For instance, Sharma et al. [27] proposed
a deep meta-reinforcement learning approach to address the multi-
task offloading problem in EEC systems. Yuan et al. [28] presented a
simulated annealing-based migratory bird algorithm for dynamic task
offloading. Tang et al. [29] designed an offloading algorithm that incor-
porates task prioritization and deep reinforcement learning to optimize
delay and energy consumption jointly. Fan et al. [30] developed a time-
sliced method for task offloading and resource allocation, effectively
minimizing task execution delay under energy consumption constraints.
Unlike [27–30], Chen et al. [31] investigated the joint optimization
problem of coverage and reliability, in which they proposed an optimal
and approximate solution based on an integer programming method.
Al-Dulaimy et al. [32] addressed software and hardware failures by
monitoring node states. Qiu et al. [33] considered the time-varying
faults and proposed an online approximation method to ensure fault
tolerance in deploying virtual network functions (VNFs). Similarly, Li
et al. [34] enhanced the reliability of VNFs by deploying both primary
and backup instances.

However, the aspect of green EH in dynamic EEC computing re-
mains unexplored, which provides an innovative solution for EDs that
traditionally depend on battery power. In light of the above, we explore
the integration of EH technology for dynamic task offloading and
resource allocation in EEC computing, focusing on optimizing both
delay and energy consumption.

3. System model

In this section, we first introduce the network model, the communi-
cation model, the computation model, and the reliability model of our
system. Then, we formulate the dynamic task offloading and resource
allocation problem in EEC computing. Some important notations in this
paper are listed in Table 2.

3.1. Network model

Consider an EEC computing system based on small cell networks.
As shown in Fig. 1, the system is divided into three layers: the cloud
layer, the edge layer, and the end layer. The cloud layer consists of a
high-performance cloud server. The edge layer comprises 𝑀 small cell
networks, each with one edge server. The set of edge servers is denoted
3
Fig. 1. Architecture of an EEC Computing renewable energy-powered computing
system.

Table 2
Key notations.
 Symbol Semantics
  The set of EDs {𝐷1 , 𝐷2 ,… , 𝐷𝑁}
  The set of edge servers {𝑆1 , 𝑆2 ,… , 𝑆𝑀}
 𝑚 The set of EDs within the range of 𝑆𝑚
 𝜏 𝑡𝑛 The task generated by 𝐷𝑛 at slot 𝑡
 𝑥𝑡𝑛 The offloading decision of 𝜏 𝑡𝑛
 𝑝𝑡𝑛 The transmission power of 𝐷𝑛 at slot 𝑡
 𝑓 𝑡

𝑛 The CPU frequency assigned to 𝜏 𝑡𝑛 for execution
 𝑁 𝑡

𝑚 The number of tasks received by 𝑆𝑚 at slot 𝑡
 𝐿𝑡

𝑛,𝑢∕𝐿
𝑡
𝑛,𝑑 The end-edge uplink/downlink transmission delay of task 𝜏 𝑡𝑛

 𝐿𝑡
𝑛,𝑈∕𝐿

𝑡
𝑛,𝐷 The edge-cloud uplink/downlink transmission delay of task 𝜏 𝑡𝑛 𝐿𝑡

𝑛,comp The computation delay of task 𝜏 𝑡𝑛
 𝐿𝑡

𝑛,tran The transmission delay of task 𝜏 𝑡𝑛
 𝐸𝑡

𝑛 The energy consumption of task 𝜏 𝑡𝑛
 𝑅𝑡

𝑛 The execution reliability of task 𝜏 𝑡𝑛

as  = {𝑆𝑚|𝑚 ∈ {1, 2,… ,𝑀}}. Each cell network also deploys a base
station to receive and distribute tasks. The end layer consists of 𝑁 EDs
 =

{

𝐷𝑛|𝑛 ∈ {1, 2,… , 𝑁}
}

, which are randomly distributed in different
small cell networks. Each ED is equipped with an EH component and
fully powered by the collected renewable energy, such as solar energy.
The set of EDs within the service range of edge server 𝑆𝑚 is denoted as
𝑚, satisfying  =

⋃

1≤𝑚≤𝑀 𝑚 and 𝑚1

⋂

𝑚2
= ∅, ∀𝑚1 ≠ 𝑚2.

To address the uncertainty in energy harvesting, we divide time into
discrete time slots  = {0, 1,…}, each with a fixed length of 𝛶 [20].
At the beginning of each slot, each ED generates a task following an
independent and identically distributed (i.i.d.) Bernoulli process [15]
with a constant probability 𝜌 ∈ [0, 1], which is the same value through-
out system operation. For instance, when 𝜌 = 0.3, it indicates a 30%
probability for an ED to generate a task at the beginning of any given
time slot. Let 𝜁 𝑡𝑛 denote the indicator of whether 𝐷𝑛 generates a task
at slot 𝑡 or not. Specifically, 𝜁 𝑡𝑛 = 1 indicates the presence of a task,
denoted by 𝜏𝑡𝑛, while 𝜁 𝑡𝑛 = 0 means that no task is generated at
slot 𝑡. The generated tasks typically have real-time constraints that
require them to be completed before their deadlines (i.e., within a
time slot). These tasks can be processed locally or offloaded to an
edge/cloud server for execution, or they may be dropped if the ED’s
battery energy is insufficient. We define the task offloading decision
as 𝑥𝑡𝑛 = {𝑥𝑡𝑛,𝑙 , 𝑥

𝑡
𝑛,𝑒, 𝑥

𝑡
𝑛,𝑐 , 𝑥

𝑡
𝑛,𝑑}

⊤, where 𝑥𝑡𝑛,𝑙 , 𝑥𝑡𝑛,𝑒, 𝑥𝑡𝑛,𝑐 , 𝑥𝑡𝑛,𝑑 ∈ {0, 1}. When
𝑥𝑡𝑛,𝑙 = 1, 𝑥𝑡𝑛,𝑒 = 1, 𝑥𝑡𝑛,𝑐 = 1, or 𝑥𝑡𝑛,𝑑 = 1, it indicates that the task
is executed on the ED, edge server, cloud server, or that the task is
dropped, respectively. Clearly, the constraint 𝑥𝑡𝑛,𝑙 +𝑥𝑡𝑛,𝑒 +𝑥𝑡𝑛,𝑐 +𝑥𝑡𝑛,𝑑 = 𝜁 𝑡𝑛
holds for ∀𝐷 ∈ .
𝑛

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
3.2. Communication model

When a task is offloaded, it is transmitted to the edge or cloud
server via the wireless network. To avoid channel interference, we
employ orthogonal frequency division multiple access [9] for wireless
communications among EDs, edge servers, and the cloud server.

3.2.1. ED-edge communication
Let 𝐵𝑚,𝑢 denote the available end-edge uplink bandwidth at edge

server 𝑆𝑚. The transmission power of ED 𝐷𝑛 for uplink transmission at
slot 𝑡 is represented as 𝑝𝑡𝑛, and the channel gain between 𝐷𝑛 and 𝑆𝑚 at
slot 𝑡 is denoted as ℎ𝑡𝑚𝑛. It is assumed that the wireless channel remains
stationary in the same slot and varies among different slots [15]. At
each slot 𝑡, there are 𝑁 𝑡

𝑚 tasks uploaded from the EDs in set 𝑚 to
edge server 𝑆𝑚, i.e., 𝑁 𝑡

𝑚 =
∑

𝐷𝑛∈𝑚
𝑥𝑡𝑛,𝑒. As a result, for ∀𝐷𝑛 ∈ 𝑚,

the achievable uplink transmission rate of task 𝜏𝑡𝑛 can be given by the
Shannon–Hartley formula [35]

𝑟𝑡𝑛,𝑢 =
𝐵𝑚,𝑢

𝑁 𝑡
𝑚

log2(1 +
ℎ𝑡𝑚𝑛𝑝

𝑡
𝑛

𝜎2
), (1)

where 𝜎2 is the noise power. Then the uplink transmission delay of task
𝜏𝑡𝑛 from 𝐷𝑛 to 𝑆𝑚 can be calculated as

𝐿𝑡
𝑛,𝑢 =

𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
, (2)

where 𝐴𝑡
𝑛 is the data amount of task 𝜏𝑡𝑛. Since the size of the output

results is significantly smaller than that of the input data, the down-
link energy consumption is excluded from the ED’s energy model, as
discussed in [36–38]. As a result, the energy consumption of 𝐷𝑛 during
transmission to the edge server can be expressed as

𝐸𝑡
𝑛,𝑢 = 𝑝𝑡𝑛𝐿

𝑡
𝑛,𝑢 =

𝑝𝑡𝑛𝐴
𝑡
𝑛

𝑟𝑡𝑛,𝑢
. (3)

After task execution at the edge server, the result is sent back to the
corresponding ED. Let 𝑃 𝑡

𝑚 denote the downlink transmission power of
edge server 𝑆𝑚. Similarly, the downlink transmission rate 𝑟𝑡𝑛,𝑑 from
server 𝑆𝑚 to ED 𝐷𝑛 can also be obtained by the Shannon capacity.
Therefore, the downlink transmission delay for the execution result of
task 𝜏𝑡𝑛 from 𝑆𝑚 to 𝐷𝑛 is

𝐿𝑡
𝑛,𝑑 =

𝑈 𝑡
𝑛

𝑟𝑡𝑛,𝑑
, (4)

where 𝑈 𝑡
𝑛 is the data amount of execution result of task 𝜏𝑡𝑛.

3.2.2. Edge-cloud communication
The edge server communicates with the cloud via the wired net-

work [29], where the transmission rate is denoted as 𝑟𝑚,𝑈 . For ∀𝐷𝑛 ∈
𝑚, the uplink transmission delay of task 𝜏𝑡𝑛 from 𝑆𝑚 to the cloud server
is

𝐿𝑡
𝑛,𝑈 =

𝐴𝑡
𝑛

𝑟𝑚,𝑈
. (5)

The downlink transmission rate from the cloud server to edge server
𝑆𝑚 can be denoted as 𝑟𝑚,𝐷. Once processed by the cloud, the result of
𝜏𝑡𝑛 is returned to edge server 𝑆𝑚, and the downlink transmission delay
is

𝐿𝑡
𝑛,𝐷 =

𝑈 𝑡
𝑛

𝑟𝑚,𝐷
. (6)

3.3. Computation model

As mentioned earlier, each task can be executed locally on the
ED, or offloaded to the edge/cloud for remote execution. We use
the Dynamic Voltage and Frequency Scaling (DVFS) technique [39]
to adjust the chip voltage and ensure the CPU frequency in a slot.
4
Let 𝑓 𝑡
𝑛,𝑙, 𝑓 𝑡

𝑛,𝑒 and 𝑓 𝑡
𝑛,𝑐 denote the CPU frequency allocated for task 𝜏𝑡𝑛

when the task is executed at ED, the edge server and the cloud server,
respectively. Then the computation delay of 𝜏𝑡𝑛 can be expressed as

𝐿𝑡
𝑛,comp =

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛
, (7)

where 𝐶 𝑡
𝑛 is the number of CPU cycles to complete task 𝜏𝑡𝑛, which is

assumed to be fixed across different execution locations as tasks are
executed on CPU cores [25,40,41]. Additionally, 𝑓 𝑡

𝑛 satisfies

𝑓 𝑡
𝑛 =

⎧

⎪

⎨

⎪

⎩

𝑓 𝑡
𝑛,𝑙 , 𝑥𝑡𝑛,𝑙 = 1

𝑓 𝑡
𝑛,𝑒, 𝑥𝑡𝑛,𝑒 = 1

𝑓 𝑡
𝑛,𝑐 , 𝑥𝑡𝑛,𝑐 = 1

. (8)

Specially, if task 𝜏𝑡𝑛 is executed locally (i.e., 𝑥𝑡𝑛,𝑙 = 1), the computation
energy consumption of 𝐷𝑛 is given by

𝐸𝑡
𝑛,𝑙 = 𝑘(𝑓 𝑡

𝑛,𝑙)
2𝐶 𝑡

𝑛, (9)

where 𝑘 is a constant depending on the processor architecture of the
ED [15].

3.4. Reliability model

Consider soft faults caused by transient failures during task execu-
tion, which generally do not damage the device hardware. According
to [13], the initial task execution failure rate for task 𝜏𝑡𝑛 can be
expressed as

𝜇(𝑓 𝑡
𝑛) = 𝜇010

𝛿(𝑓max−𝑓𝑡𝑛)
𝑓max−𝑓min , (10)

where 𝜇0 is the fault rate when the device operates at the maximum
frequency 𝑓max, 𝛿 is a constant indicating the sensitivity of the fault rate
to voltage scaling, and 𝑓max/𝑓min is the maximum/minimum processing
speed of the system. Let 𝑊 𝑡

𝑛 denote the vulnerability factor of task
𝜏𝑡𝑛 [12], which is used to evaluate the reliability of the task. According
to the exponential distribution model of faults [42], the execution
reliability of task 𝜏𝑡𝑛 is given as

𝑅𝑡
𝑛 = 𝑒

−𝜇(𝑓 𝑡
𝑛)𝑊

𝑡
𝑛
𝐶𝑡
𝑛

𝑓𝑡𝑛 . (11)

Therefore, the system reliability can be calculated as the product of the
reliability of all tasks, 𝑖.𝑒. ,

𝑅𝑡 =
∏

𝜏𝑡𝑛∈𝛤

𝑅𝑡
𝑛. (12)

3.5. Problem formulation

As discussed, task 𝜏𝑡𝑛 can be executed locally, on an edge server, or
on the cloud, with corresponding transmission delays in each case. If
task 𝜏𝑡𝑛 is executed locally (i.e., 𝑥𝑡𝑛,𝑙 = 1), there is no need for offloading,
and thus, the transmission delay is zero. If task 𝜏𝑡𝑛 is offloaded to the
associated edge server 𝑆𝑚 for execution (i.e., 𝑥𝑡𝑛,𝑒 = 1), the transmission
delay includes both the uplink and downlink transmission delays be-
tween 𝐷𝑛 and 𝑆𝑚. If task 𝜏𝑡𝑛 is further offloaded to the cloud server (i.e.,
𝑥𝑡𝑛,𝑐 = 1), the transmission delay includes not only the uplink/downlink
transmission delays between 𝐷𝑛 and 𝑆𝑚 but also the uplink/downlink
transmission delays between 𝑆𝑚 and the cloud server. Therefore, the
total transmission delay of 𝜏𝑡𝑛 is expressed as

𝐿𝑡
𝑛,tran =

⎧

⎪

⎪

⎨

⎪

⎪

0, 𝑥𝑡𝑛,𝑙 = 1
𝐿𝑡
𝑛,𝑢 + 𝐿𝑡

𝑛,𝑑 , 𝑥𝑡𝑛,𝑒 = 1
𝐿𝑡
𝑛,𝑢 + 𝐿𝑡

𝑛,𝑑 + 𝐿𝑡
𝑛,𝑈 + 𝐿𝑡

𝑛,𝐷, 𝑥𝑡𝑛,𝑐 = 1
𝑡

. (13)
⎩

0, 𝑥𝑛,𝑑 = 1

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
According to Eqs. (7) and (13), the total execution delay 𝐿𝑡
𝑛 of task 𝜏𝑛

can be calculated as
𝐿𝑡
𝑛 =𝐿

𝑡
𝑛,comp + 𝐿𝑡

𝑛,tran

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑙
, 𝑥𝑡𝑛,𝑙 = 1

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑒

+ 𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
+ 𝑈 𝑡

𝑛
𝑟𝑡𝑛,𝑑

, 𝑥𝑡𝑛,𝑒 = 1
𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑐

+ 𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
+ 𝑈 𝑡

𝑛
𝑟𝑡𝑛,𝑑

+ 𝐴𝑡
𝑛

𝑟𝑚,𝑈
+ 𝑈 𝑡

𝑛
𝑟𝑚,𝐷

, 𝑥𝑡𝑛,𝑐 = 1

0, 𝑥𝑡𝑛,𝑑 = 1

.
(14)

Since edge and cloud servers typically have abundant energy re-
sources, we focus only on the energy consumption of EDs. If task 𝜏𝑛
is executed locally (i.e., 𝑥𝑡𝑛,𝑙 = 1), the energy consumption of 𝐷𝑛 is
equivalent to its local computation energy consumption. In contrast, if
𝜏𝑛 is offloaded to either the edge server or the cloud server (i.e., 𝑥𝑡𝑛,𝑒 = 1
or 𝑥𝑡𝑛,𝑐 = 1), the energy consumption of 𝐷𝑛 is determined by the energy
required for uplink transmission. Therefore, according to Eqs. (3) and
(9), the energy consumption of 𝐷𝑛 for task 𝜏𝑡𝑛 can be expressed as

𝐸𝑡
𝑛 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑘(𝑓 𝑡
𝑛,𝑙)

2𝐶 𝑡
𝑛, 𝑥𝑡𝑛,𝑙 = 1

𝑝𝑡𝑛𝐴
𝑡
𝑛

𝑟𝑡𝑛,𝑢
, 𝑥𝑡𝑛,𝑒 = 1

𝑝𝑡𝑛𝐴
𝑡
𝑛

𝑟𝑡𝑛,𝑢
, 𝑥𝑡𝑛,𝑐 = 1

0, 𝑥𝑡𝑛,𝑑 = 1

. (15)

We model the energy harvesting process as a continuous process of
arriving energy packets. Let 𝐸𝑡

𝑛,𝐻 denote the energy collected by 𝐷𝑛
during the slot 𝑡−1, which satisfies the independent homogeneous dis-
tribution in different slots and obeys the distribution 𝐸𝑡

𝑛,𝐻 ∼ 𝑈 (0, 𝐸max
𝐻).

The portion of 𝐸𝑡
𝑛,𝐻 stored by 𝐷𝑛 is denoted as 𝑒𝑡𝑛, which is utilized

to perform the tasks of slot 𝑡. Following [15,19,43,44], we adopt the
commonly accepted i.i.d. model to harvest the energy. This model
captures the stochastic and intermittent nature of renewable energy
processes. Let 𝑄𝑡

𝑛 denote the battery energy of 𝐷𝑛 at slot 𝑡. Then the
variation of battery energy between neighboring slots can be calculated
as
𝑄𝑡+1

𝑛 = max{𝑄𝑡
𝑛 + 𝑒𝑡𝑛 − 𝐸𝑡

𝑛, 0}. (16)

Task execution delay is widely used to estimate system performance.
However, the stochastic and intermittent nature of renewable energy
may cause task dropping. Considering both task execution delay and
dropping overhead, we define the system execution cost of slot 𝑡 as
𝑐𝑜𝑠𝑡𝑡 ≜

∑

𝐷𝑛∈
𝑐𝑜𝑠𝑡𝑡𝑛

=
∑

𝐷𝑛∈
𝟏(𝜁 𝑡𝑛 = 1)

{

𝐿𝑡
𝑛 + 𝜆 ⋅ 𝟏(𝑥𝑡𝑛,𝑑 = 1)

}

,
(17)

where 𝜆 is the penalty for task dropping. Based on the definition, we
formulate the dynamic task offloading and resource allocation problem
as

P1 ∶ min
𝑥𝑡𝑛 ,𝑓 𝑡

𝑛 ,𝑝𝑡𝑛 ,𝑒𝑡𝑛
lim
𝑇→∞

1
𝑇
E

[𝑇
∑

𝑡=1
𝑐𝑜𝑠𝑡𝑡

]

𝐬.𝐭. 𝑓 𝑡
𝑛,𝑙 ≤ 𝑓max

𝑙 , ∀𝐷𝑛 ∈ , 𝑡 ∈  (18a)
∑

𝐷𝑛∈𝑚

𝑥𝑡𝑛,𝑒𝑓
𝑡
𝑛,𝑒 ≤ 𝑓max

𝑚,𝑒 , ∀𝑆𝑚 ∈  , 𝑡 ∈  (18b)

𝑝𝑡𝑛 ≤ 𝑝max
𝑙 , ∀𝐷𝑛 ∈ , 𝑡 ∈  (18c)

0 ≤ 𝐸𝑡
𝑛 ≤ 𝐸max, ∀𝐷𝑛 ∈ , 𝑡 ∈  (18d)

0 ≤ 𝑒𝑡𝑛 ≤ 𝐸𝑡
𝑛,𝐻 , ∀𝐷𝑛 ∈ , 𝑡 ∈  (18e)

𝐿𝑡
𝑛 ≤ 𝛶 , ∀𝐷𝑛 ∈ , 𝑡 ∈  (18f)

𝑅𝑡 ≥ 𝑅th, 𝑡 ∈  (18g)
5
Fig. 2. Overview of our proposed method.

𝑥𝑡𝑛,𝑙 + 𝑥𝑡𝑛,𝑒 + 𝑥𝑡𝑛,𝑐 + 𝑥𝑡𝑛,𝑑 = 𝜁 𝑡𝑛, ∀𝐷𝑛 ∈ , 𝑡 ∈  (18h)

𝑥𝑡𝑛,𝑙 , 𝑥
𝑡
𝑛,𝑒, 𝑥

𝑡
𝑛,𝑐 , 𝑥

𝑡
𝑛,𝑑 ∈ {0, 1}, ∀𝐷𝑛 ∈ , 𝑡 ∈  (18i)

Eq. (18a) indicates that the CPU frequency of each ED cannot exceed
its maximum allowed frequency when performing the task locally.
Eq. (18b) indicates that the computation resources allocated to the tasks
executed on each edge server should be within its capacity. Eq. (18c)
ensures that the transmission power of each ED during task offloading
remains within its maximum power limit. Eq. (18d) represents that the
energy consumption of each ED in slot 𝑡 does not exceed the maximum
discharge threshold of the battery 𝐸max. Eq. (18e) indicates that the net
energy harvested by the ED at slot 𝑡 does not exceed the total harvested
energy. Eq. (18f) is the deadline constraint for the task. Eq. (18g)
denotes that the reliability of executing all tasks in time slot 𝑡 is not
lower than the given threshold 𝑅th. Eq. (18h) ensures that tasks can
only offload to one location. Eq. (18i) is the binary constraint on the
decision variables. Our objective is to determine the task offloading
decision 𝑥𝑡𝑛, the CPU frequency 𝑓 𝑡

𝑛, the transmission power 𝑝𝑡𝑛, and the
net energy harvested 𝑒𝑡𝑛 to minimize the long term system execution
cost under all the design constraints.

4. Lyapunov-based dynamic task offloading and resource alloca-
tion algorithm

4.1. Methodology framework

This section addresses the problem of minimizing execution costs in
an EEC computing system and proposes a Dynamic Task Offloading and
Resource Allocation (DTORA) framework. The proposed framework
contains three key components: Lyapunov-based decoupling, convex
optimization-based resource allocation, and multiple discrete particle
swarm optimization (MDPSO) based task offloading, as illustrated in
Fig. 2. Specifically, to address the time-dependent nature and energy
harvesting uncertainties of the original problem P1, we apply Lyapunov
optimization by adding a lower energy bound, which ensures that the
output energy in each slot is either zero or above this bound [15].
Based on this, we transform the problem P1 into a modified prob-
lem P2. According to Lyapunov optimization theory, minimizing the
Lyapunov drift plus penalty function enables the transformation of
multi-slot coupled constraints into a modified single-slot problem for
resolution [19]. Thus, by constructing a Lyapunov drift-plus-penalty
function and deriving its upper bound, we ensure the stability of
battery energy, which is denoted as P3. Furthermore, we decompose

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
P3 into two subproblems: the energy harvesting problem P𝐸𝐻 and
the task offloading and resource allocation problem P𝑇𝑂𝑅𝐴. The P𝐸𝐻
can be solved using linear programming due to the linear property of
the objective function of P𝐸𝐻 , while the P𝑇𝑂𝑅𝐴 can be split into the
resource allocation problem P𝑅𝐴 and the task offloading problem P𝑇𝑂.
Before solving the resource allocation problem, we first initialize the
offloading decision for all tasks. Then we design a convex optimization
algorithm to perform resource allocation for the offloaded tasks. This
process involves numerical analyses, such as derivatives and Lagrange
multipliers, to derive closed-form solutions for the optimal transmis-
sion power and frequency resource allocation among local EDs, edge
servers, and the cloud server. Lastly, we design the MDPSO algorithm
to determine the locations for task execution, which can efficiently
find the high-quality task offloading decision that achieves satisfactory
performance while meeting all the constraints.

Note that our proposed Lyapunov optimization framework dynam-
ically balances energy supply and demand to stabilize battery levels,
ensuring sufficient energy reserves for task execution under varying
energy harvesting conditions. If the energy is critically low, task drop-
ping is allowed in our framework to save energy. But our algorithms
would adaptively adjust task offloading decisions and local processing
strategies to avoid task dropping.

4.2. Decoupling the original problem by Lyapunov optimization

Given the inherently stochastic nature of the energy harvested in
each slot, the battery energy levels of EDs fluctuate over time [19].
These fluctuations introduce coupling among system decisions across
different slots, complicating the problem-solving process. According
to [15], the coupling between decisions in different slots can be mit-
igated by imposing a battery energy bound. Thus, in our analysis,
we introduce a lower bound 𝐸min on the battery output energy for
each slot and construct constraint (19a). Specifically, this constraint
ensures that the output energy in each slot is either zero or above 𝐸min.
This modification allows for per-slot optimization without considering
historical energy dependencies. The feasibility has been rigorously
proved in [15] (Proposition 1). In this way, P1 can be reformulated
as follows.

P2 ∶ min
𝑥𝑡𝑛 ,𝑓 𝑡

𝑛 ,𝑝𝑡𝑛 ,𝑒𝑡𝑛
lim
𝑇→∞

1
𝑇
E

[𝑇
∑

𝑡=1
𝑐𝑜𝑠𝑡𝑡

]

𝐬.𝐭. (18a)–(18c), (18e)–(18i)
𝐸𝑡
𝑛 ∈ {0} ∪ {𝐸min, 𝐸max}. (19a)

Next, we address problem P2 using the Lyapunov optimization
theory. The standard Lyapunov optimization approach assumes that the
operations across different time slots are independent and identically
distributed. However, due to the time-dependent nature of system
decisions, the direct application of the original Lyapunov optimization
method is infeasible. To address this issue, we introduce a weighted
perturbation method, which is an effective technique for handling
the time dependence of decisions [45]. Specifically, we denote the
maximum energy consumed by the ED 𝐷𝑛 as

�̃�max
𝑛 = min

{

max
𝑡∈

{

𝑘(𝑓 𝑡
𝑛,𝑙)

2𝐶 𝑡
𝑛, 𝑝

max
𝑙 𝛶

}

, 𝐸max
}

. (20)

According to [15], we introduce a perturbation parameter 𝜃𝑛 for 𝐷𝑛 as
a tuning knob to prevent battery energy from hitting boundaries (0 or
𝐸max), denoted as

𝜃𝑛 ≥ �̃�max
𝑛 + 𝑉 𝜆 ⋅ 𝐸min−1 , (21)

where 𝑉 is a weighted control parameter for task execution delay. We
define the virtual battery energy queue �̃�𝑡

𝑛 for the EH device 𝐷𝑛. In
Lyapunov optimization, by stabilizing �̃�𝑡 around zero, we can achieve
𝑛

6
the stability of the actual battery energy 𝑄𝑡
𝑛. The virtual energy queue

�̃�𝑡
𝑛 can be expressed as

�̃�𝑡
𝑛 = 𝑄𝑡

𝑛 − 𝜃𝑛, (22)

where 𝑄𝑡
𝑛 is the battery energy as given in Eq. (16). By controlling the

virtual energy queue �̃�𝑡
𝑛 and the control parameter 𝑉 , our goal is to

minimize the Lyapunov drift plus penalty function [19]. This approach
can ensure the stability of the energy queue around the designated
threshold. Based on this, we build the quadratic Lyapunov function as

L (𝑡) = 1
2

𝑁
∑

𝑛=1
(�̃�𝑡

𝑛)
2 = 1

2

𝑁
∑

𝑛=1
(𝑄𝑡

𝑛 − 𝜃𝑛)
2. (23)

Furthermore, the Lyapunov drift function can be derived as

𝛥(𝑡) = E
[

L (𝑡 + 1) − L (𝑡)|�̃�𝑡] , (24)

where �̃�𝑡 =
[

�̃�𝑡
1,… , �̃�𝑡

𝑁
] is the set of virtual energy queues for all EDs

at slot 𝑡. We can obtain the upper bound of 𝛥(𝑡) as in the following
theorem.

Theorem 1. There exists an upper bound for 𝛥(𝑡), i.e.,

𝛥(𝑡) ≤ 𝛷 +
𝑁
∑

𝑛=1
�̃�𝑡

𝑛E
[

𝑒𝑡𝑛 − 𝐸𝑡
𝑛|�̃�

𝑡] ,

where 𝛷 = 1
2
∑𝑁

𝑛=1

[

(𝐸max
𝐻)2 + (𝐸max)2

]

.

Proof. Combining Eqs. (16), (22) and (24), we derive the Lyapunov
drift

𝛥(𝑡) =E
[

L (𝑡 + 1) − L (𝑡)|�̃�𝑡]

=1
2

𝑁
∑

𝑛=1
E
[

(�̃�𝑡+1
𝑛)2 − (�̃�𝑡

𝑛)
2
|�̃�𝑡]

=1
2

𝑁
∑

𝑛=1
E
[

(�̃�𝑡
𝑛 + 𝑒𝑡𝑛 − 𝐸𝑡

𝑛)
2 − (�̃�𝑡

𝑛)
2
|�̃�𝑡]

≤1
2

𝑁
∑

𝑛=1
E
[

(𝑒𝑡𝑛)
2 + (𝐸𝑡

𝑛)
2 + 2�̃�𝑡

𝑛(𝑒
𝑡
𝑛 − 𝐸𝑡

𝑛)|�̃�
𝑡
]

. (25)

Recall that the upper bound of 𝑒𝑡𝑛 is 𝐸max
𝐻 , and the upper bound of 𝐸𝑡

𝑛

is 𝐸max. Setting 𝛷 = 1
2
∑𝑁

𝑛=1

[

(𝐸max
𝐻)2 + (𝐸max)2

]

, it is obvious that

𝛥(𝑡) ≤ 𝛷 +
𝑁
∑

𝑛=1
�̃�𝑡

𝑛E
[

𝑒𝑡𝑛 − 𝐸𝑡
𝑛|�̃�

𝑡] . □ (26)

By extending the Lyapunov drift to an optimization problem, our
objective is to minimize an upper bound on the following drift-plus-
penalty expression in each time slot

𝛥𝑉 (𝑡) =𝛥(𝑡) + 𝑉 ⋅ E
[

𝑐𝑜𝑠𝑡𝑡|�̃�𝑡]

≤𝛷 +
𝑁
∑

𝑛=1
E
[

�̃�𝑡
𝑛(𝑒

𝑡
𝑛 − 𝐸𝑡

𝑛) + 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛|�̃�
𝑡] . (27)

In Eq. (27), 𝛷 is a constant, so P2 is further represented as a minimiza-
tion of ∑𝑁

𝑛=1 E
[

�̃�𝑡
𝑛(𝑒

𝑡
𝑛 − 𝐸𝑡

𝑛) + 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛|�̃�
𝑡], i.e., problem P3.

P3 ∶ min
𝑥𝑡𝑛 ,𝑓 𝑡

𝑛 ,𝑝𝑡𝑛 ,𝑒𝑡𝑛

𝑁
∑

𝑛=1

[

�̃�𝑡
𝑛(𝑒

𝑡
𝑛 − 𝐸𝑡

𝑛) + 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛
]

𝐬.𝐭. (18a)–(18c), (18e)–(18i), (19a)

We can solve the original problem by minimizing P3 per time slot.
Before proceeding with its solution, we present the following theorem
to show that the solution obtained by our algorithm approximates the
theoretical solution of the problem P2.

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
Theorem 2. The long-term average execution delay and long-term net
collected energy have upper bounds, i.e.,

lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0

𝑁
∑

𝑛=1
E
[

𝑐𝑜𝑠𝑡𝑡,∗𝑛
]

≤ 𝛷
𝑉

+ 𝑐𝑜𝑠𝑡opt , (29)

lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0

𝑁
∑

𝑛=1
E
[

𝑒𝑡𝑛 − 𝐸𝑡,∗
𝑛
]

≤ 𝛷 + 𝑉 (𝑐𝑜𝑠𝑡max − 𝑐𝑜𝑠𝑡opt), (30)

where ∗ indicates the high-quality solution found by our algorithm, and
𝑐𝑜𝑠𝑡𝑡,∗𝑛 is the corresponding execution cost of the solution. 𝑐𝑜𝑠𝑡max =
𝑁𝑐𝑜𝑠𝑡max

𝑛 is the system’s maximum execution cost. 𝑐𝑜𝑠𝑡opt is the cost
corresponding to the theoretically optimal solution to the problem P2.

Proof. Due to page limit, the proof of Theorem 2 is provided in
Appendix A. □

Theorem 2 shows that the bound of the cost performance of problem
P3 is close to that of problem P2. Next, we divide the problem P3 into
two parts for optimization, the energy harvesting part �̃�𝑡

𝑛𝑒
𝑡
𝑛 and the

execution costing part −�̃�𝑡
𝑛𝐸

𝑡
𝑛 +𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛. We design the optimal energy

harvesting and the optimal task offloading and resource allocation
algorithms to handle these two parts, respectively.

4.3. Optimal energy harvesting

The optimal harvested energy of 𝐷𝑛 can be determined by solving
the following linear programming problem
P𝐸𝐻 ∶min

𝑒𝑡𝑛
�̃�𝑡

𝑛𝑒
𝑡
𝑛

𝐬.𝐭. (18e)
Let 𝑒𝑡∗𝑛 denote the optimal solution of P𝐸𝐻 . It is obvious that when

�̃�𝑡
𝑛 ≤ 0, i.e., 𝑄𝑡

𝑛 ≤ 𝜃𝑛, the optimal strategy is to maximize the harvested
energy, i.e., setting 𝑒𝑡∗𝑛 = 𝐸𝑡

𝑛,𝐻 . This means that 𝐷𝑛 should fully harvest
the available energy in the slot 𝑡. Conversely, when �̃�𝑡

𝑛 > 0, i.e., 𝑄𝑡
𝑛 >

𝜃𝑛, the optimal strategy is to minimize the energy input, resulting in
𝑒𝑡∗𝑛 = 0, implying that 𝐷𝑛 will not harvest energy in the slot 𝑡. Thus, we
have

𝑒𝑡𝑛 =

{

𝐸𝑡
𝑛,𝐻 , �̃�𝑡

𝑛 ≤ 0
0, �̃�𝑡

𝑛 > 0
. (31)

Further, we can derive the range of values of 𝑄𝑡
𝑛 by the following

theorem.

Theorem 3. According to the optimal energy harvesting strategy, there
exists an upper bound on the battery energy of 𝐷𝑛, i.e., 𝑄𝑡

𝑛 ∈
[

0, 𝜃𝑛 + 𝐸max
𝐻

]

,
∀𝑡 ∈  .

Proof. It is obvious that 𝑄𝑡
𝑛 ∈

[

0, 𝜃𝑛 + 𝐸max
𝐻

] is true when 𝑡 = 0.
When 𝑡 = 𝑇 , we assume that the induction hypothesis holds, i.e.,
𝑄𝑇

𝑛 ∈
[

0, 𝜃𝑛 + 𝐸max
𝐻

]

.

• If 𝑄𝑇
𝑛 ≤ 𝜃𝑛, from Eq. (31), 𝑒𝑇𝑛 = 𝐸𝑇

𝑛,𝐻 holds. Thus, 𝑄𝑇
𝑛 + 𝑒𝑇 ∗𝑛 ≤

𝜃𝑛 + 𝑒𝑇 ∗𝑛 ≤ 𝜃𝑛 + 𝐸max
𝐻 . According to Eq. (16), we have 𝑄𝑇+1

𝑛 ≤
𝑄𝑇

𝑛 + 𝑒𝑇 ∗𝑛 ≤ 𝜃𝑛 + 𝐸max
𝐻 .

• If 𝜃𝑛 < 𝑄𝑇
𝑛 ≤ 𝜃𝑛 + 𝐸max

𝐻 , from Eq. (31), it holds 𝑒𝑇 ∗𝑛 = 0. Then we
have 𝑄𝑇+1

𝑛 ≤ 𝑄𝑇
𝑛 ≤ 𝜃𝑛 + 𝐸max

𝐻 .

In conclusion, when 𝑡 = 𝑇 + 1, 𝑄𝑇+1
𝑛 ∈

[

0, 𝜃𝑛 + 𝐸max
𝐻

]

. We com-
plete the mathematical induction, i.e., ∀𝑡 ∈  , it holds that 𝑄𝑡

𝑛 ∈
[

0, 𝜃𝑛 + 𝐸max
𝐻

]

. □

4.4. Optimal resource allocation

After solving the energy harvesting part of P3, we solve the execu-
tion cost part, which can be expressed as the following problem.

P𝑇𝑂𝑅𝐴 ∶ min
𝑥𝑡𝑛 ,𝑓 𝑡

𝑛 ,𝑝𝑡𝑛

𝑁
∑

𝑛=1

[

−�̃�𝑡
𝑛𝐸

𝑡
𝑛 + 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛

]

𝐬.𝐭. (18a)–(18c), (18f)–(18i), (19a)

7
Algorithm 1: Optimal Resource Allocation
Input: Current slot ℎ𝑡𝑚𝑛,𝐻 𝑡

𝑚, 𝑁
𝑡
𝑚, 𝑁

𝑡, task set 𝛤 , a given fixed
task offloading decision 𝑋𝑡

Output: Resource allocation decision
1 for Each ED do
2 if Task executing locally then
3 Calculate the optimal frequency 𝑓 𝑡∗

𝑛,𝑙 using Eq. (32);
4 else if Task executing at edge then
5 Calculate the optimal transmission power 𝑝𝑡∗𝑛 using Eq.

(33);
6 Calculate the optimal frequency allocation for edge

servers 𝑓 𝑡∗
𝑛,𝑒 using Eq. (34);

7 else if Task executing at cloud then
8 Calculate the optimal transmission power 𝑝𝑡∗𝑛 using Eq.

(33);
9 else if Dropped or no-generated tasks then
10 Continue;

11 return Resource allocation decision;

It should be noted that once the task offloading strategy is deter-
mined, P𝑇𝑂𝑅𝐴 can be reframed as a resource allocation problem P𝑅𝐴.
The resource allocation for tasks executed at the local, edge, and cloud
levels, as well as for dropped tasks, is independent of each other. In
other words, these four cases are fully decoupled, which enables us to
decompose P𝑅𝐴 into four independent subproblems. Specifically, when
task 𝜏𝑡𝑛 is dropped, the objective of P𝑅𝐴 simplifies to a constant 𝑉 𝜆.
Therefore, we will only discuss the other three cases in the following.
The proposed resource allocation strategy is formally described in
Algorithm 1.

4.4.1. Local execution
For each task 𝜏𝑡𝑛 executed locally on 𝐷𝑛, we aim to obtain the

optimal CPU frequency for 𝐷𝑛, which is expressed as

P𝑅𝐴,𝑙 ∶min
𝑓 𝑡
𝑛,𝑙

− �̃�𝑡
𝑛𝑘
(

𝑓 𝑡
𝑛,𝑙

)2
+ 𝑉 ⋅

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑙

𝐬.𝐭. (18a), (18f), (19a)
We first derive the feasible range of P𝑅𝐴,𝑙. From Eqs. (14) and (18f),

𝐿𝑡
𝑛 = 𝐶 𝑡

𝑛
𝑓 𝑡
𝑛,𝑙

≤ 𝛶 , thus the local device’s frequency satisfies 𝑓 𝑡
𝑛,𝑙 ≥ 𝐶 𝑡

𝑛
𝛶 .

Additionally, from Eqs. (18a) and (19a), we have 𝑓 𝑡
𝑛,𝑙 ≤ 𝑓max

𝑙 and
√

𝐸min

𝑘𝐶 𝑡
𝑛

≤ 𝑓 𝑡
𝑛,𝑙 ≤

√

𝐸max

𝑘𝐶 𝑡
𝑛
, respectively. Therefore, we can derive the

lower and upper bounds of 𝑓 𝑡
𝑛,𝑙 as 𝑓 𝑡

𝑛,𝐿 = max
{√

𝐸min

𝑘𝐶 𝑡
𝑛
, 𝐶

𝑡
𝑛
𝛶

}

 and 𝑓 𝑡
𝑛,𝑈 =

min
{√

𝐸max

𝑘𝐶 𝑡
𝑛
, 𝑓max

𝑙

}

, respectively.
Let the objective function of P𝑅𝐴,𝑙 be 𝐹 (𝑓 𝑡

𝑛,𝑙) = −�̃�𝑡
𝑛𝑘

(

𝑓 𝑡
𝑛,𝑙

)2
+ 𝑉 ⋅

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑙
. By taking the derivative of 𝐹 (𝑓 𝑡

𝑛,𝑙), we have 𝐹 ′(𝑓 𝑡
𝑛,𝑙) =

−2�̃�𝑡
𝑛𝑘𝑓

𝑡
𝑛,𝑙𝐶

𝑡
𝑛 − 𝑉 𝐶 𝑡

𝑛

𝑓 𝑡
𝑛,𝑙

2 . When �̃�𝑡
𝑛 ≥ 0, 𝐹 ′(𝑓 𝑡

𝑛,𝑙) < 0 holds. Therefore,
𝐹 (𝑓 𝑡

𝑛,𝑙) is monotonically decreasing, and the optimal value of 𝑓 𝑡
𝑛,𝑙 is

𝑓 𝑡∗
𝑛,𝑙 = 𝑓 𝑡

𝑛,𝑈 . When �̃�𝑡
𝑛 < 0, we set 𝐹 ′(𝑓 𝑡

𝑛,𝑙) = 0 and find the extremal

point 𝑓 𝑡
𝑛,𝑙 =

(

−𝑉
2�̃�𝑡

𝑛𝑘

)
1
3 . The value of 𝑓 𝑡

𝑛,𝑙 is discussed as follows.

• If 𝑓 𝑡
𝑛,𝑙 ≤ 𝑓 𝑡

𝑛,𝐿, i.e., �̃�𝑡
𝑛 ≤ −𝑉

2𝑘(𝑓 𝑡
𝑛,𝐿)

3 , then 𝐹 (𝑓 𝑡
𝑛,𝑙) is monotonically

increasing, and we have 𝑓 𝑡∗
𝑛,𝑙 = 𝑓 𝑡

𝑛,𝐿.
• If 𝑓 𝑡

𝑛,𝐿 < 𝑓 𝑡
𝑛,𝑙 < 𝑓 𝑡

𝑛,𝑈 , i.e.,
−𝑉

2𝑘(𝑓 𝑡
𝑛,𝐿)

3 < �̃�𝑡
𝑛 < −𝑉

2𝑘(𝑓 𝑡
𝑛,𝑈)3 , then 𝐹 (𝑓 𝑡

𝑛,𝑙)

reaches the minimal value at 𝑓 𝑡
𝑛,𝑙, and 𝑓 𝑡∗

𝑛,𝑙 = 𝑓 𝑡
𝑛,𝑙.

• If 𝑓 𝑡
𝑛,𝑙 ≥ 𝑓 𝑡

𝑛,𝑈 , i.e.,
−𝑉

2𝑘(𝑓 𝑡
𝑛,𝑈)3 ≤ �̃�𝑡

𝑛 < 0, then 𝐹 (𝑓 𝑡
𝑛,𝑙) is monotonically

decreasing, and we have 𝑓 𝑡∗ = 𝑓 𝑡 .
𝑛,𝑙 𝑛,𝑈

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
In conclusion, the optimal allocation of local frequency is

𝑓 𝑡∗
𝑛,𝑙 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓 𝑡
𝑛,𝐿, �̃�𝑡

𝑛 ≤
−𝑉

2𝑘(𝑓 𝑡
𝑛,𝐿)

3

𝑓 𝑡
𝑛,𝑙 ,

−𝑉
2𝑘(𝑓 𝑡

𝑛,𝐿)
3 < �̃�𝑡

𝑛 <
−𝑉

2𝑘(𝑓 𝑡
𝑛,𝑈)3

𝑓 𝑡
𝑛,𝑈 , �̃�𝑡

𝑛 ≥
−𝑉

2𝑘(𝑓 𝑡
𝑛,𝑈)3

. (32)

4.4.2. Edge server execution
Let ̂𝑡

𝑚 represent the set of EDs offloading tasks to the edge server
𝑆𝑚 at slot 𝑡. For each edge server 𝑆𝑚, the resource allocation problem
can be represented as

P𝑅𝐴,𝑒 ∶ min
𝑓 𝑡
𝑛,𝑒 ,𝑝𝑡𝑛

∑

𝐷𝑛∈̂𝑡
𝑚

−�̃�𝑡
𝑛
𝑝𝑡𝑛𝐴

𝑡
𝑛

𝑟𝑡𝑛,𝑢
+ 𝑉

(

𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
+

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑒

+
𝑈 𝑡
𝑛

𝑟𝑡𝑛,𝑑

)

𝐬.𝐭. (18b), (18c), (18f), (19a)
The objective of P𝑅𝐴,𝑒 can be expressed as the sum of three terms:
−�̃�𝑡

𝑛
𝑝𝑡𝑛𝐴

𝑡
𝑛

𝑟𝑡𝑛,𝑢
+𝑉 𝐴𝑡

𝑛
𝑟𝑡𝑛,𝑢
, 𝑉 𝐶 𝑡

𝑛
𝑓 𝑡
𝑛,𝑒
, and 𝑉 𝑈 𝑡

𝑛
𝑟𝑡𝑛,𝑑
. Notably, the third term is a constant.

To optimize the first two terms, we determine the optimal transmission
power and the optimal frequency assignment separately.

Optimal Transmission Power. If task 𝜏𝑡𝑛 is offloaded, it is trans-
mitted to the edge server over the wireless channel. The optimal
transmission power allocation problem for 𝐷𝑛 is expressed as

P𝑅𝐴,𝑒𝑝 ∶min
𝑝𝑡𝑛

− �̃�𝑡
𝑛
𝑝𝑡𝑛𝐴

𝑡
𝑛

𝑟𝑡𝑛,𝑢
+ 𝑉 ⋅

𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
𝐬.𝐭. (18c), (18f), (19a)
We first derive the range of 𝑝𝑡𝑛𝑟𝑡𝑛,𝑢

−1 by the following lemma.

Lemma 1. The function 𝐻(𝑝𝑡𝑛) = 𝑝𝑡𝑛𝑟
𝑡
𝑛,𝑢

−1 is monotonically increasing with
respect to 𝑝𝑡𝑛, and it takes values in the range

(

𝜎2𝜉𝐴𝑡
𝑛
−1 ln 2,+∞

)

, where
𝜉 = 𝐴𝑡

𝑛𝑁
𝑡
𝑚
(

𝐵𝑚,𝑢ℎ𝑡𝑚𝑛
)−1.

Proof. Due to page limit, the detailed proof is provided in Appendix
B.1 □

Based on Lemma 1, we proceed to derive the optimal transmission
power 𝑝𝑡∗𝑛 . As a preliminary step, we first derive the feasible range of
P𝑅𝐴,𝑒𝑝. From Eq. (18f), 𝐿𝑡

𝑛 = 𝐴𝑡
𝑛𝑟

𝑡
𝑛,𝑢

−1 ≤ 𝛶 implies that the transmission
power satisfies 𝑝𝑡𝑛 ≥ 𝜎2

ℎ𝑡𝑚𝑛
(2𝜉ℎ𝑡𝑚𝑛𝛶−1−1). From Eq. (18c), we also have 𝑝𝑡𝑛 ≤

𝑝max
𝑙 . Additionally, from Eq. (19a), the inequality 𝐸min ≤ 𝑝𝑡𝑛𝐴

𝑡
𝑛𝑟

𝑡
𝑛,𝑢

−1 ≤
𝐸max holds. Solving this inequality yields the bounds 𝑝𝑡

𝑛,𝐸min ≤ 𝑝𝑡𝑛 ≤
𝑝𝑡𝑛,𝐸max . Note that 𝑝𝑡𝑛,𝐸min and 𝑝𝑡𝑛,𝐸max cannot be expressed in closed form.
In conclusion, we derive the lower and upper bounds of 𝑝𝑡𝑛 as

𝑝𝑡𝑛,𝐿 =

{

max {𝑝𝑡𝑛,𝛶 , 𝑝
𝑡
𝑛,𝐸min}, 𝜉𝜎2 ln 2 < 𝐸min

𝑝𝑡𝑛,𝛶 , 𝜉𝜎2 ln 2 ≥ 𝐸min ,

and

𝑝𝑡𝑛,𝑈 =

{

min {𝑝max
𝑙 , 𝑝𝑡𝑛,𝐸max}, 𝜉𝜎2 ln 2 < 𝐸max

0, 𝜉𝜎2 ln 2 ≥ 𝐸max ,

respectively, where 𝑝𝑡𝑛,𝛶 = 𝜎2

ℎ𝑡𝑚𝑛
(2𝜉ℎ𝑡𝑚𝑛𝛶−1 − 1).

For ease of presentation, the first term of the objective of P𝑅𝐴,𝑒 is
denoted as 𝐹 (𝑝𝑡𝑛) = −�̃�𝑡

𝑛
𝑝𝑡𝑛𝐴

𝑡
𝑛

𝑟𝑡𝑛,𝑢
+𝑉 ⋅

𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
. By taking the derivative of 𝐹 (𝑝𝑡𝑛),

we have

𝐹 ′(𝑝𝑡𝑛) =
𝜉ℎ𝑡𝑚𝑛
log22 𝜀

⋅ 𝐺(𝑝𝑡𝑛),

where 𝐺(𝑝𝑡𝑛) = −�̃�𝑡
𝑛 log2 𝜀 + (�̃�𝑡

𝑛𝑝
𝑡
𝑛 − 𝑉) ℎ𝑡𝑚𝑛

𝜎2𝜀 ln 2 and 𝜀 = 1 + ℎ𝑡𝑚𝑛𝑝
𝑡
𝑛𝜎

−2.

1 The range of function 𝐻(𝑝𝑡𝑛) is derived from [15]. Since the proof is not
provided in [15], we prove it in the paper.
8
When �̃�𝑡
𝑛 ≥ 0, it holds 𝐹 ′(𝑝𝑡𝑛) < 0. Therefore, 𝐹 (𝑝𝑡𝑛) is monotonically

decreasing, and the optimal value of 𝑝𝑡𝑛 is 𝑝𝑡∗𝑛 = 𝑝𝑡𝑛,𝑈 . When �̃�𝑡
𝑛 < 0,

the derivative of 𝐺(𝑝𝑡𝑛) indicates that 𝐺(𝑝𝑡𝑛) is monotonically increasing.
Additionally, 𝐺(0) = −𝑉 ℎ𝑡𝑚𝑛

𝜎2 ln 2 and lim𝑝𝑡𝑛→+∞ 𝐺(𝑝𝑡𝑛) = +∞. Therefore, there
exists �̂�𝑡𝑛 ∈ (0,+∞) making 𝐹 ′(𝑝𝑡𝑛) = 0. The value of �̂�𝑡𝑛 is discussed as
follows.

• If �̂�𝑡𝑛 ≤ 𝑝𝑡𝑛,𝐿, then 𝐹 (𝑝𝑡𝑛) is monotonically increasing, and we have
𝑝𝑡∗𝑛 = 𝑝𝑡𝑛,𝐿.

• If 𝑝𝑡𝑛,𝐿 < �̂�𝑡𝑛 < 𝑓 𝑡
𝑛,𝑈 , then 𝐹 (𝑝𝑡𝑛) reaches a minimal value at �̂�𝑡𝑛, and

𝑝𝑡∗𝑛 = �̂�𝑡𝑛.
• If �̂�𝑡𝑛 ≥ 𝑝𝑡𝑛,𝑈 , then 𝐹 (𝑝𝑡𝑝) is monotonically decreasing, and we have
𝑝𝑡∗𝑛 = 𝑝𝑡𝑛,𝑈 .

In conclusion, the optimal transmission power of 𝐷𝑛 is

𝑝𝑡∗𝑛 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑡𝑛,𝑈 , �̃�𝑡
𝑛 ≥ 0 or �̃�𝑡

𝑛 < 0, 𝑝𝑡′𝑛 ≥ 𝑝𝑡𝑛,𝑈
𝑝𝑡′𝑛 , �̃�𝑡

𝑛 < 0, 𝑝𝑡𝑛,𝐿 < 𝑝𝑡′𝑛 < 𝑝𝑡𝑛,𝑈
𝑝𝑡𝑛,𝐿, �̃�𝑡

𝑛 < 0, 𝑝𝑡′𝑛 ≤ 𝑝𝑡𝑛,𝐿

. (33)

Optimal Frequency Allocation. For an edge server 𝑆𝑚, multiple
offloaded tasks compete for computation resources within a given time
slot. The optimal frequency allocation problem for 𝑆𝑚 is expressed as

P𝑅𝐴,𝑒𝑓 ∶min
𝑓 𝑡
𝑛,𝑒

∑

𝐷𝑛∈̂𝑡
𝑚

𝑉 ⋅
𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑒

𝐬.𝐭. (18b), (18f), (19a)
According to Eq. (18b), the computation resources allocated to each

task 𝜏𝑡𝑛 by the edge server at slot 𝑡 are interdependent, making it
infeasible to determine the optimal allocated frequency for each task in-
dependently. To address this issue, we employ the Lagrange Multiplier
method that transforms a complex optimization problem with multiple
constraints into an unconstrained one [46]. First, we represent the
resource constraint of the edge server as 𝐻(𝑓 𝑡

𝑛,𝑒) = 𝑓max
𝑚,𝑒 −

∑

𝐷𝑛∈̂𝑡
𝑚
𝑓 𝑡
𝑛,𝑒.

In general, a higher CPU frequency assigned to a task leads to lower
task delay and better user experience. Therefore, we assume 𝐻(𝑓 𝑡

𝑛,𝑒) = 0
which indicates that the computing capacity of the edge server is fully
utilized. Based on this, we construct the Lagrangian function (𝑓 𝑡

𝑛,𝑒, 𝜂) =
∑

𝐷𝑛∈̂𝑡
𝑚
𝑉 ⋅

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑒

+ 𝜂𝐻(𝑓 𝑡
𝑛,𝑒). By taking the total derivatives of (𝑓 𝑡

𝑛,𝑒, 𝜂),
we have ′

𝑓 𝑡
𝑛,𝑒

= − 𝑉 𝐶 𝑡
𝑛

(𝑓 𝑡
𝑛,𝑒)2

− 𝜂 and ′
𝜂 = 𝑓max

𝑚,𝑒 −
∑

𝐷𝑛∈̂𝑡
𝑚
𝑓 𝑡
𝑛,𝑒. When

′
𝑓 𝑡
𝑛,𝑒

= ′
𝜂 = 0, 𝑓 𝑡

𝑛,𝑒 =
√

𝑉 𝐶 𝑡
𝑛

−𝜂 and ∑𝐷𝑛∈̂𝑡
𝑚
𝑓 𝑡
𝑛,𝑒 = 𝑓max

𝑚,𝑒 hold. From this,

we can obtain ∑𝐷𝑛∈̂𝑡
𝑚

√

𝑉 𝐶 𝑡
𝑛

−𝜂 = 𝑓max
𝑚,𝑒 and √−𝜂 =

∑

𝐷𝑛∈̂𝑡
𝑚

√

𝑉 𝐶 𝑡
𝑛

𝑓max
𝑚,𝑒

. Thus,
the optimal frequency of task 𝜏𝑡𝑛 can be derived as

𝑓 𝑡∗
𝑛,𝑒 =

𝑓max
𝑚,𝑒

√

𝑐𝑡𝑛
∑

𝐷𝑛∈̂𝑡
𝑚

√

𝑐𝑡𝑛
. (34)

4.4.3. Cloud server execution
The cloud server typically has significantly greater computation

power compared to EDs and edge servers. Following [41], we assume
that each task offloaded to the cloud server is executed with a constant
CPU frequency. As a result, for each task 𝜏𝑡𝑛 offloaded to the cloud
server, the optimization problem focuses on determining the optimal
transmission power for 𝐷𝑛.

P𝑅𝐴,𝑐𝑝 ∶min
𝑝𝑡𝑛

− �̃�𝑡
𝑛
𝑝𝑡𝑛𝐴

𝑡
𝑛

𝑟𝑡𝑛,𝑢
+ 𝑉 ⋅

𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
𝐬.𝐭. (18c), (18f), (19a)

Similar to the case of task offloading execution on edge servers, we
obtain the optimal transmission power 𝑝𝑡∗𝑛 for task offloading execution
on the cloud server by solving the optimization problem P . For
𝑅𝐴,𝑐𝑝

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
brevity, the detailed derivation is omitted here. The 𝑝𝑡∗𝑛 is formulated
as

𝑝𝑡∗𝑛 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑡𝑛,𝑈 , �̃�𝑡
𝑛 ≥ 0 or �̃�𝑡

𝑛 < 0, 𝑝𝑡′𝑛 ≥ 𝑝𝑡𝑛,𝑈
𝑝𝑡′𝑛 , �̃�𝑡

𝑛 < 0, 𝑝𝑡𝑛,𝐿 < 𝑝𝑡′𝑛 < 𝑝𝑡𝑛,𝑈
𝑝𝑡𝑛,𝐿, �̃�𝑡

𝑛 < 0, 𝑝𝑡′𝑛 ≤ 𝑝𝑡𝑛,𝐿

. (35)

4.5. MDPSO-based task offloading algorithm

After solving the resource allocation problem, the task offloading
problem is expressed as
P𝑇𝑂 ∶min

𝑥𝑡𝑛
�̃�𝑡

𝑛(𝑒
𝑡
𝑛 − 𝐸𝑡

𝑛) + 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛

𝐬.𝐭. (18g)–(18i)
Discrete Particle Swarm Optimization (DPSO) algorithm [47] is

commonly used to obtain discrete task offloading decisions. However,
the inherent randomness in population initialization may cause DPSO
to converge local optima. To overcome this shortage, we propose a
task offloading scheme based on the Multiple Discrete Particle Swarm
Optimization (MDPSO). The MDPSO algorithm divides the population
of size 𝑆 into 𝛾 smaller sub-populations, each containing 𝑆∕𝛾 par-
ticles. Each sub-population explores offloading decisions in parallel,
which promotes diversity in the search process. Furthermore, the evo-
lution of sub-populations can be distributed, accelerating the overall
algorithmic performance. When the offloading decisions of all the sub-
populations converge, crossover and exchange operations are applied
to the high-quality offloading decisions obtained from the individual
sub-populations to further improve the solution quality. After that, the
high-quality solution is selected as the final task offloading decision
output by the MDPSO algorithm. Fig. 3 gives an example to show the
different search processes of DPSO and MDPSO.

In the MDPSO algorithm, the particle’s position information 𝑋𝑡 =
[

𝑥𝑡1,… , 𝑥𝑡𝑛,… , 𝑥𝑡𝑁
] represents the task offloading decision at slot 𝑡.

Specifically, the 𝑛th dimension 𝑥𝑡𝑛 = [𝑥𝑡𝑛,𝑙 , 𝑥
𝑡
𝑛,𝑒, 𝑥

𝑡
𝑛,𝑐 , 𝑥

𝑡
𝑛,𝑑]

⊤ of 𝑋𝑡 denotes
the offloading decision for task 𝜏𝑡𝑛. Each element of 𝑥𝑡𝑛 must satisfy
the constraints outlined in Eq. (18h). The particle’s velocity 𝑌 𝑡 =
[

𝑦𝑡1,… , 𝑦𝑡𝑛,… , 𝑦𝑡𝑁
] represents the tendency of the task to be offloaded

to different execution locations, where each 𝑦𝑡𝑛 is a 4 × 1 vector. The
velocity update rule is given by

𝑌 𝑡,𝑘+1 = 𝜔𝑌 𝑡,𝑘 + 𝑐1𝑟1
(

𝑋𝑡,𝑘
𝑏 −𝑋𝑡,𝑘

)

+ 𝑐2𝑟2
(

𝑋𝑡,𝑘
𝑔𝑏 −𝑋𝑡,𝑘

)

, (36)

where 𝑋𝑡,𝑘
𝑏 denotes the better offloading decisions found by particles

after the 𝑘th iteration, and 𝑋𝑡,𝑘
𝑔𝑏 denotes the high-quality offloading

decisions found by the sub-populations. 𝜔 is the inertia weight, 𝑐1, 𝑐2
are the learning factors, and 𝑟1, 𝑟2 are random numbers. The particle
position update rule is
𝑋𝑡,𝑘+1 = 𝑋𝑡,𝑘 + 𝑌 𝑡,𝑘+1. (37)

To evaluate the quality of offloading decisions, we set the objective of
problem P3 as the particle’s fitness, i.e.,
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘 =

[

�̃�𝑡
𝑛(𝑒

𝑡
𝑛 − 𝐸𝑡

𝑛) + 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛
]𝑘 . (38)

The proposed MDPSO-based task offloading scheme is detailed in
Algorithm 2. The algorithm begins by dividing the population into sub-
populations to enhance diversity during the evolution process (Line 1).
Subsequently, we initialize the offloading decisions and the correspond-
ing optimal resource allocations and fitness (Lines 2–4). The algorithm
iterates over all particles to optimize offloading decisions, terminating
when the decisions within each sub-population converge (Lines 5–16).
During each iteration, the velocity and position of particles representing
offloading decisions are updated according to Eqs. (36) and (37) (Line
7). Then Algorithm 1 is called to decide the optimal resource allocation
of 𝑋𝑡,𝑘

𝑗 (Line 8). To ensure the reliability of task execution, a critical
constraint is imposed: if the reliability associated with a computed deci-
sion does not meet the predefined threshold (Line 11), the fitness value
9
Fig. 3. Diagram of standard DPSO and MDPSO. Blue circles denote particles (offloading
decisions), potential good decisions represent offloading decisions with better fitness,
and local optima mark the current high-quality offloading decision. In DPSO, particles
converge to a global high-quality decision (e.g., D1), potentially missing better solutions
like D2. MDPSO splits particles into sub-populations that independently explore the
search space, discovering multiple high-quality decisions (e.g., D1, D2, D3, D4, D5).
MDPSO reduces the risk of local optima and achieves superior offloading decisions.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

for that decision is set to positive infinity, excluding it from further
consideration (Line 12). We employ stochastic cross-swapping [48] to
enable the exchange of high-quality decisions between sub-populations,
facilitating convergence toward a global optimum by leveraging the
strengths of diverse local high-quality (Line 18–22). Finally, the al-
gorithm outputs the high-quality task offloading decision 𝑋𝑡∗ (Line
23).

4.6. The overall DTORA framework

The overall DTORA framework is summarized in Algorithm 3. First,
the framework uses Lyapunov optimization techniques to decouple the
original problem. (Lines 1–2). Next, it obtains the task offloading and
resource allocation strategy for each time slot (Lines 3–8). Specifically,
the framework determines the optimal energy harvesting strategy (Line
6) and then calls Algorithm 2 to derive the high-quality task offloading
decision (Line 7). In Algorithm 2, Algorithm 1 is called to derive the
optimal resource allocation solution. At the end of each slot, the battery
power of all EDs is updated for the decision-making of the next slot
(Line 8).

The time complexity of DTORA is analyzed as follows. Lines 1–2
are executed once with a constant complexity 𝑂(1). Line 4 iterates over
𝑁 EDs, resulting in a complexity of 𝑂(|𝑁|). For lines 5–6, the time
complexity is at most 𝑂(|𝑁|). Line 7 calls Algorithm 2 to solve the task
offloading problem with a complexity dominated by the configuration
combinations. In intra-group iteration, each of 𝛾 groups processes 𝑆

𝛾
particles. The velocity and position updates for each group take 𝑆𝛾 ⋅𝑁 ⋅𝜌
and the fitness evaluation for 𝑁 ⋅ 𝜌 tasks requires 𝑂(1) time per task,

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
Algorithm 2: MDPSO based Task Offloading
Input: Current slot environment attributes, task generation

situation
Output: Task offloading decision

1 Generate a population of size 𝑆 and homogenize the population
into 𝛾 sub-populations;

2 Initialize all offloading decisions 𝑋𝑡,0
1 , 𝑋𝑡,0

2 ,… , 𝑋𝑡,0
𝑆 ;

3 Call Algorithm 1 to calculate the optimal resource allocation;
4 Update the cost fitness 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘 and the high-quality cost

fitness 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑏 according to Eq. (38);
5 while |𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑏 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘−1𝑏 | < 𝜑 do
6 for Each particle 𝑗 do
7 Update 𝑌 𝑡,𝑘

𝑗 and 𝑋𝑡,𝑘
𝑗 according to Eq. (36) and Eq. (37);

8 Call Algorithm 1 to decide the optimal resource
allocation of 𝑋𝑡,𝑘

𝑗 ;
9 Calculate the task execution reliability 𝑅𝑡,𝑘

𝑗 according to
Eq. (11);

10 Calculate 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑗 according to Eq. (38);
11 if 𝑅𝑘

𝑗 < 𝑅th then
12 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑗 = +∞;

13 else if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑗 < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑗,𝑏 then
14 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑗,𝑏 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑗 ;
15 𝑋𝑡,𝑘

𝑖,𝑏 = 𝑋𝑡,𝑘
𝑗 ;

16 Update the global high-quality cost fitness 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑖,𝑔 of each
sub-population 𝑖;

17 Obtain 𝑋𝑡∗ with the minimum fitness of decision;
18 while ∃𝑋𝑡,𝑘

𝑖1 ,𝑏
≠ 𝑋𝑡,𝑘

𝑖2 ,𝑏
 do

19 𝑋𝑡,𝑘
new = 𝐶𝑟𝑜𝑠𝑠𝑠𝑤𝑎𝑝(𝑋𝑡,𝑘

𝑖1 ,𝑏
, 𝑋𝑡,𝑘

𝑖2 ,𝑏
);

20 if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘new < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡∗ then
21 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡∗ = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘new;
22 𝑋𝑡∗ = 𝑋𝑡,𝑘

new;

23 return Task offloading decision 𝑋𝑡∗;

Algorithm 3: DTORA Framework
1 Set the virtual energy queue based on Eqs. (21) and (22);
2 Obtain the decoupled problem P3 using Eq. (27);
3 for each slot do
4 Get the system state of the current time slot 𝑡 and the

generated task set 𝛤 ;
5 for Each ED 𝐷𝑛 do
6 Calculate the optimal energy harvesting 𝑒𝑡∗𝑛 according to

Eq. (31);
7 Call Algorithm 2 to derive the task offloading decision 𝑋𝑡∗;
8 Update the battery energy of all EDs according to Eq. (16);

yielding 𝑆
𝛾 ⋅ 𝑁 ⋅ 𝜌. Over 𝑇 iterations, the total complexity is at most

𝑇 ⋅2𝛾 ⋅ 𝑆𝛾 ⋅𝑁 ⋅𝜌 = 𝑂(𝑇 ⋅𝑆 ⋅𝑁 ⋅𝜌). For inter-group crossover, exchanging 𝛾
high-quality solutions has complexity 𝑂(𝛾 ⋅𝑁 ⋅𝜌). Therefore, the overall
complexity of MDPSO is 𝑂(|𝛩|) = 𝑂(𝑇 ⋅𝑆 ⋅𝑁 ⋅ 𝜌) since 𝑇 ⋅𝑆 ≫ 𝛾, where
|𝛩| = 𝑇 ⋅ 𝑆 ⋅𝑁 ⋅ 𝜌. Here, 𝑇 , 𝑆, 𝑁 , and 𝜌 are the number of iterations,
particles, EDs, and the task generation probability, respectively. Thus,
𝛩 represents the configuration combinations of MDPSO. For line 8, the
time complexity is at most 𝑂(|𝑁|). Therefore, for Algorithm 3, the time
complexity is at most 𝑂(1)+𝑂(|𝑁|)+𝑂(|𝑁|)+𝑂(𝑇 ⋅𝑀 ⋅𝑁 ⋅𝜌)+𝑂(|𝑁|) =

𝑂(|𝛩|).
10
Table 3
Experimental parameters setting.
 Variants Value Variants Value
 𝑀 5 𝑟𝑚,𝑈 100 Mbps
 𝜆 2 ms 𝑟𝑚,𝐷 300 Mbps
 𝛶 2 ms ℎ𝑡

𝑚𝑛 𝑔0(𝑑0∕𝑑)
4

 𝐸max
𝐻 0.048 mJ 𝑔0 −40 dB

 𝐸max 2 mJ 𝑑0 1 m
 𝐸min 0.02 mJ 𝑑 60 m–100 m
 𝐴𝑡

𝑛 1000 bits 𝜎2 10−13 W
 𝑈 𝑡

𝑛 200 bits 𝑓max
𝑙 1.5 GHz

 1 bits-cycles 600–800 𝑝max
𝑙 0.5 w

 𝑊 𝑡
𝑛 (0,1] 𝑘 10−28

 𝜇0 10−2 𝑓max
𝑚,𝑒 3 GHz

 𝛿 3 𝑓 𝑡
𝑛,𝑐 3 GHz

 𝐵𝑛,𝑢 35 MHz 𝑃𝐻 12 mW
 𝐵𝑛,𝑑 100 MHz

5. Evaluation

5.1. Experimental settings

The experimental settings are detailed in Table 3.
(1) Scenario: We conduct an EEC system consisting of 30 EDs, 5

edge servers (𝑀 = 5), and a cloud server. The system is simulated
over 3000 time slots, each with a duration of 𝛶 = 2 ms. The same
value 𝜆 = 2 ms is used for the task drop penalty [15]. The energy
collected by ED in each slot is uniformly distributed between 0 and
𝐸max
𝐻 , where 𝐸max

𝐻 = 𝑃𝐻 ⋅ 2𝛶 and the average energy collection power
is 𝑃𝐻 = 12mW [20]. The maximum/minimum output energy of the
battery in a slot is 𝐸max = 2 mJ/𝐸min = 0.02 mJ [20]. We evaluate the
system under five task generation probabilities, i.e., 0.3, 0.5, 0.7, 0.9,
and 1. Each task 𝜏𝑡𝑛 has a data volume 𝐴𝑡

𝑛 = 1000 bits [49], and returns
𝑈 𝑡
𝑛 = 200 bits result data upon completion. It requires 600–800 CPU

cycles to process one bit of data. The fragility factor 𝑊 𝑡
𝑛 of task 𝜏𝑡𝑛 is

uniformly distributed in the range of (0,1] [14]. The initial failure rate
is 𝜇0 = 10−2 [42] and the sensitivity constant is 𝛿 = 3 [14].

(2) Communication: We adopt three resource configurations: Low,
Medium, and High, which are shown in Table 4. In the absence of spe-
cific instructions, the upload/downlink bandwidth 𝐵𝑛,𝑢/𝐵𝑛,𝑑 between
the EDs and the edge servers are set to 35 MHz and 100 MHz, respec-
tively. The upload/download wired rates 𝑟𝑚,𝑈/𝑟𝑚,𝐷 between edge and
cloud are set to 100 Mbps and 300 Mbps, respectively. The channel
power gain ℎ𝑡𝑚𝑛 follows an exponential distribution with a mean value
of 𝑔0(𝑑0∕𝑑)4, where 𝑔0 = −40 dB, 𝑑0 = 1m is the reference distance,
and 𝑑 is randomly distributed between [60,100]m. The noise power on
the receiver side is 𝜎2 = 10−13 W [41]. The maximum CPU frequency,
the maximum transmit power, and the chip relevance factor of each
ED are set as 𝑓max

𝑙 = 1.5 GHz [20], 𝑝max
𝑙 = 0.5 W, and 𝑘 = 10−28 [15],

respectively. The maximum CPU frequencies of the edge servers and
the allocated CPU frequency of the cloud server are 𝑓max

𝑚,𝑒 = 3 GHz and
𝑓 𝑡
𝑛,𝑐 = 3 GHz, respectively.

5.2. Benchmarks and performance metrics

We compare the proposed DTORA algorithm with the following
benchmarks.

• End Only (End): All tasks are executed entirely on the local
device without any offloading.

• Edge Only (Edge): All tasks are offloaded to an edge server for
execution.

• Cloud Only (Cloud): All tasks are offloaded to a remote cloud
server for execution.

• Random Offloading (Random): Randomly generates task of-
floading decisions and applies our proposed optimal energy har-
vesting and resource allocation algorithms to optimize the cost.

X. Song et al.

Journal of Systems Architecture 167 (2025) 103469
Table 4
Resource configuration.
 Configuration End-Edge

upload bandwidth
End-edge
download bandwidth

Edge-cloud
upload rate

Edge-cloud
download rate

Edge server
CPU frequency

Cloud server
allocation frequency

 Low 25 MHz 80 MHz 80 Mbps 200 Mpbs 2.5 GHz 2.5 GHz
 Medium 35 MHz 100 MHz 100 Mbps 300 Mbps 3.0 GHz 3.0 GHz
 High 45 MHz 120 MHz 120 Mbps 400 Mbps 3.5 GHz 3.5 GHz
Fig. 4. Average execution costs of different algorithms under different 𝜌 and resource configurations.
11

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
Fig. 5. Average execution costs of different algorithms under different 𝜌 and execution reliability.
• Cost Optimal (C-Opt): This method corresponds to the optimal
policy derived in Theorem 2, formulating P2 as a static problem
focused on minimizing system cost. It employs a solver to com-
pute the decision without long-term energy constraints, providing
performance bounds for the problem.

• Lyapunov based Genetic Algorithm (Ly-GA) [50]: This method
uses Lyapunov optimization to decouple P1 to P3, with GA de-
termining task offloading. In the GA algorithm, our proposed
optimal energy harvesting and resource allocation algorithms are
applied to calculate the fitness of the task offloading decision.

• Lyapunov based Discrete Particle Swarm Optimization (Ly-
DPSO): Similarly to Ly-GA, this method employs DPSO algorithm
to obtain the task offloading decision. In the DPSO algorithm, our
proposed optimal energy harvesting and resource allocation algo-
rithms are applied to calculate the fitness of the task offloading
decision.

To assess the performance of our solutions, we utilize the following
metrics in our numerical evaluation.

• Average Execution Cost: After the EDs execute the offloading de-
cision, we can calculate the average execution cost under different
algorithms.

• Execution Reliability: We use the numerical values calculated
by Eq. (12) to assess the execution reliability of the tasks.

• Battery Energy: We measure the battery energy of each ED
in each slot to assess the effectiveness of DTORA in stabilizing
battery energy.

5.3. Experimental results

In this section, we first evaluate the impact of the DTORA algorithm
on the average execution cost, reliability, and battery energy. Then
we assess the influence of various parameters on our algorithm, e.g.,
the perturbation parameter 𝜃, the weight 𝑉 , and the lower bound of
the battery output energy 𝐸min. Without loss of generality, we set the
number of sub-populations 𝛾 = 3 for the subsequent evaluation.

5.3.1. Algorithm comparison
Fig. 4 compares the average execution cost of different algorithms.

As shown in the figure, the algorithms that involve local execution,
i.e., DTORA, Ly-DPSO, Ly-GA, Random, End, and C-Opt, often incur
higher initial cost, but tend to stabilize at lower levels over time. For
example, in Fig. 4(b), the cost of the DTORA algorithm stays around
6 ms for the first 500 slots and stabilizes around 4 ms after that. This
is attributed to the initial insufficient battery energy of the ED, which
leads to low CPU frequency during local execution, causing a high
execution delay. Additionally, limited battery energy causes frequent
task dropping, further elevating the cost. As time progresses, the battery
energy gradually accumulates, enabling a higher CPU frequency for
local execution and fewer task drops, resulting in lower execution costs.
12
Fig. 6. Comparison of runtime for DTORA, Ly-DPSO, Ly-GA, and C-Opt algorithms.

Fig. 7. Performance of DTORA under different 𝛾 values.

Unlike the above algorithms, the Edge and Cloud algorithms maintain a
stable cost value throughout the process. Compared to other algorithms,
the C-Opt always achieves the lowest execution cost, as it achieves an
optimal solution. In addition, our DTORA algorithm performs close to
the C-Opt algorithm and better than the other algorithms in all scenar-
ios. For example, as shown in Fig. 4(j), the stabilization costs for the
Cloud, Random, Ly-GA, End, Ly-DPSO, DTORA, and C-Opt algorithms
are 37.9 ms, 32.0 ms, 31.2 ms, 30.7 ms, 27.5 ms, 23.4 ms, and 22.9 ms,
respectively. Compared to the Cloud, Random, Ly-GA, End, and Ly-
DPSO algorithms, DTORA reduces the execution cost by 38.2%, 26.9%,
25.0%, 23.6%, and 14.8%, respectively. Moreover, compared to the
C-Opt algorithm, DTORA shows only a 2.5% gap in performance.

Additionally, as the task generation probability 𝜌 increases, the cost
of all algorithms increases, and the convergence rate of most algorithms
slows down. For example, as shown in Fig. 4(a)(d)(g)(j)(m), the DTORA
algorithm converges to lower cost values at approximately 500, 650,
900, 1100, and 1600 time slots for 𝜌 values of 0.3, 0.5, 0.7, 0.9, and
1, respectively. Furthermore, the higher the resource configuration, the
lower the execution cost for all algorithms except the End algorithm.
For example, in Fig. 4(a)(b)(c), the stabilization cost of the Ly-DPSO
algorithm is about 5 ms, 4.5 ms, and 4 ms, respectively. It is observed

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
Fig. 8. Battery energy levels of EDs.
Fig. 9. Impact of 𝑉 and 𝐸min on average execution cost and battery energy.

that the Edge algorithm is more sensitive to both 𝜌 and resource
allocation compared to the End and Cloud algorithms. For example, in
Fig. 4(a)(b)(c), the costs of the Edge and Cloud algorithms under Low,
Medium, and High resource configurations are approximately 11 ms,
9 ms, 7 ms and 7 ms, 5.5 ms, 4 ms, respectively. This is because
ED 𝐷𝑛 executes at most one task under the End strategy in a single
slot, whereas the Edge and Cloud algorithms need to handle multiple
tasks. Note that due to the limited resources of the edge servers, the
cost of the Edge algorithm is too high, and we only display it in Fig.
4(a)(b)(c)(e)(f)(i).

Fig. 5 shows the impact of task execution reliability constraints on
the average execution cost. Since the offloading decisions generated
by the End, Edge, Cloud, and C-Opt algorithms are deterministic and
cannot be adjusted based on reliability, the analysis focuses solely
on the DTORA, Ly-DPSO, Ly-GA, and Random algorithms. Among
these, the DTORA algorithm consistently achieves the lowest cost. For
example, in Fig. 5(a), the cost of DTORA is visibly lower than the other
algorithms under the task generation probability of 0.3, 0.5, 0.7, 0.9
and 1. As shown in Fig. 5(c), at a task generation probability of 0.9, the
average execution costs for the DTORA, Ly-DPSO, Ly-GA, and Random
13
algorithms are 21.0 ms, 24.1 ms, 25.3 ms, and 29.4 ms, respectively.
The DTORA algorithm achieves average execution cost reductions of
12.6%, 16.9%, and 28.4% compared to the Ly-DPSO, Ly-GA, and
Random algorithms. Furthermore, a higher task generation probability
𝜌 leads to an increase in the average execution cost for all algorithms.
For example, in Fig. 5(b), when the reliability constraint is fixed at
0.90, the cost of the DTORA algorithm is 4.3 ms, 8.5 ms, 14.2 ms,
20.8 ms, and 25.6 ms as 𝜌 is set to 0.3, 0.5, 0.7, 0.9, and 1, respectively.
As the reliability constraints become stricter, the average execution
cost increases for all algorithms. For example, in Fig. 5(a)(b)(c), when
𝜌 = 1, the average execution costs of the DTORA algorithm are 24.9 ms,
25.6 ms, and 26.0 ms as the reliability constraints are set to 0.85, 0.90,
and 0.95, respectively.

Fig. 6 presents the runtime of the DTORA, Ly-DPSO, Ly-GA, and
C-Opt algorithms in a time slot. Compared to the C-OPT algorithm, the
runtime of DTORA, Ly-DPSO, and Ly-GA algorithms are much lower.
As 𝜌 increases, the runtime of all the algorithms increases, and the
runtime of the DTORA algorithm becomes closer to that of the Ly-
DPSO and Ly-GA algorithms. For example, when 𝜌 = 0.3, the DTORA
algorithm exhibits a relatively higher overhead compared to the Ly-
GA and Ly-DPSO algorithms, with a noticeable performance gap. As 𝜌
increases, this gap decreases. For example, when 𝜌 = 0.9, the runtime of
DTORA, Ly-DPSO, and Ly-GA are 0.174 ms, 0.170 ms, and 0.165 ms,
respectively, and DTORA is only 2.2% and 5.2% slightly higher than
that of the Ly-DPSO and Ly-GA algorithms, respectively, and accounts
for merely 8.7% of the entire time slot. As 𝜌 increases, the runtime of
the C-Opt algorithm becomes increasingly distinct compared to other
algorithms. For example, when 𝜌 = 0.9, the runtime of C-Opt is approx-
imately 16 times longer than that of the DTORA algorithm, making it
unsuitable for dynamic systems. Thus, due to the short runtime of the
algorithm, the energy consumption of DTORA is negligible.

Summary of Figs. 4 and 6: although the runtime of DTORA is
slightly higher than that of Ly-DPSO and Ly-GA, the cost is obviously
lower compared to Ly-DPSO and Ly-GA. In contrast, while the C-Opt
algorithm demonstrates the lowest cost, its runtime is unacceptable.
However, our DTORA algorithm achieves satisfactory performance in
terms of both cost and runtime.

5.3.2. The impact of parameters
Fig. 7 presents the execution cost of the DTORA algorithm for

different values of sub-populations 𝛾 = {2, 3, 4, 5, 6, 7, 8}. It is evident
that 𝛾 = 3 results in the lowest cost, indicating the best performance of
DTORA. This is because a larger 𝛾 allows sub-populations to evolve in
various directions, facilitating the exploration of multiple local optima.
However, this comes with a trade-off: increasing 𝛾 reduces the number
of particles per sub-population. Thus, DTORA obtains a higher cost at
𝛾 = 7, 8.

Fig. 8 illustrates the battery energy of EDs controlled by different
perturbation parameters 𝜃, when the number of EDs is 30. The dotted
lines illustrate the upper bound of battery energy for EDs with the

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
Fig. 10. Average execution costs of different algorithms in large-scale systems.

value of 𝜃𝑛+𝐸max
𝐻 . During the initial slots, the EDs utilize the harvested

energy to charge their batteries, leading to a linear increase in battery
energy. As shown in Fig. 8(a), after stabilization, ED 𝐷6 achieves a
higher battery energy. This discrepancy arises from the differences in
𝜃𝑛 for each ED 𝐷𝑛, resulting in distinct virtual energy queues and
consequently different stable battery energy. Furthermore, after the
1000th slot, all EDs stabilize at their respective upper energy bounds.
Battery energy remains constrained within the range [0, 𝜃𝑛 + 𝐸max

𝐻],
confirming the validity of Theorem 3.

Fig. 9 demonstrates the effects of the control parameter 𝑉 and the
lower bound on battery output energy 𝐸min on battery energy and
average execution cost. The parameter settings of 𝑉 and 𝐸min for our
experimental evaluation are determined following prior studies [15,
20]. The change of the average execution cost is depicted in Fig. 9(a).
As the value of 𝐸min decreases, the average execution cost increases.
For 𝑉 = 1.0𝑒 − 4 and 𝐸min = 0.01 mJ, the average execution cost is
highest during the first 800 time slots. This is because 𝐸min influences
the minimum CPU frequency for local execution, resulting in slower
task execution at the initial stage. In later stages, the stabilized average
execution cost decreases as 𝑉 increases or 𝐸min decreases. For instance,
when 𝐸min = 0.02 mJ, the stabilized cost is highest for 𝑉 = 0.5𝑒−4 and
lowest for 𝑉 = 1.6𝑒 − 4. This is due to the combined effect of 𝑉 and
𝐸min on the penalty term 𝜆 in Eq. (21), encouraging energy-efficient
task execution over task dropping.

The change of battery energy is shown in Fig. 9(b). The results
indicate that higher 𝑉 values or lower 𝐸min values lead to higher
stabilized battery energy. For example, when 𝑉 = 1.0𝑒 − 4 and 𝐸min =
0.01 mJ, the stabilized battery energy is nearly double that of 𝑉 =
1.0𝑒−4 and 𝐸min = 0.02 mJ. Similarly, the battery energy for 𝑉 = 1.0𝑒−4
and 𝐸min = 0.02 mJ is approximately twice that of 𝑉 = 0.5𝑒 − 4
and 𝐸min = 0.02 mJ. It is obvious that the stabilized battery energy
is directly proportional to 𝑉 and inversely proportional to 𝐸min, as
validated by Eq. (21). Therefore, by selecting appropriate combinations
of (𝑉 ,𝐸min), it is possible to adapt the system with various performance
requirements.

5.3.3. Large-scale system simulations
To evaluate the feasibility of the algorithm in large-scale systems,

we conduct a set of simulation experiments involving 300 EDs and 50
edge servers. As shown in Fig. 10, when 𝜌 = 0.5 and the resource
configuration is Medium, the stabilization costs for the Edge, End,
Random, Cloud, Ly-GA, Ly-DPSO, DTORA, and C-Opt algorithms are
217.4 ms, 127.1 ms, 117.4 ms, 113.7 ms, 99.6 ms, 98.8 ms, and
85.3 ms, respectively. Compared to these algorithms, DTORA reduces
the execution cost by 60.8%, 33.9%, 27.4%, 25.0%, 14.4%, and 13.7%,
respectively. Fig. 11 shows the performance of these algorithms on the
average execution time under varying reliability constraints for task
execution. It can be seen that our algorithm consistently achieves the
lowest execution cost compared to other algorithms. The experimental
results indicate that our DTORA maintains robust performance even in
14
Fig. 11. Average execution costs of different algorithms under varying execution
reliability in large-scale systems.

Fig. 12. Average execution costs under varying numbers of EDs and edge servers in
large-scale systems.

large-scale systems. Fig. 12 presents the results of average execution
time under varying numbers of EDs and edge servers, showing that exe-
cution time increases linearly with the number of EDs and edge servers.
This observation validates the algorithmic complexity and scalability
analysis discussed in Section 4.6. In our future real-world experiments,
we can implement Jetson Orin Nano boards featuring a 6-core ARM
Cortex-A78AE architecture as EH EDs, a Dell P5820 workstation to
simulate edge servers, and an NVIDIA RTX 3090 to simulate a cloud
server. Each ED can be equipped with a solar panel, an EH module,
and a battery. To facilitate energy monitoring in experiments, we can
integrate Raspberry Pi 4B units with voltage/power monitors to track
harvested energy.

6. Conclusion and future work

In this paper, we have proposed a new task offloading and resource
allocation method for EH-EEC computing systems. Our approach has
addressed the critical challenges of resource constraints, task execution
reliability, and battery energy stability. We have formulated the task
offloading problem as a cost optimization problem, considering factors
such as ED capacity, task reliability, and energy consumption. By
leveraging Lyapunov optimization, we have provided optimal closed-
form solutions for computation and transmission power allocation.
Additionally, we have designed the MDPSO algorithm to determine
the optimal offloading strategy. Extensive experimental results have
demonstrated the superiority of our method in terms of reducing delay,
enhancing task execution reliability, and maintaining energy stability
under dynamic conditions.

In future work, we plan to extend our scheduling framework to
accommodate more complex edge-cloud systems, particularly those
with temporally correlated energy harvesting patterns. This involves

X. Song et al.

.

Journal of Systems Architecture 167 (2025) 103469
developing models to capture time-dependent energy arrival and de-
signing robust scheduling policies for such scenarios. Additionally, we
will also adapt our solution to specific EH models, such as those related
to solar energy.

CRediT authorship contribution statement

Xiaozhu Song: Writing – review & editing, Writing – original
draft, Validation, Software, Methodology, Investigation, Formal analy-
sis. Qianpiao Ma: Writing – review & editing, Validation, Supervision,
Formal analysis, Data curation, Conceptualization. Gan Zheng: Writing
– review & editing. Liying Li: Formal analysis, Methodology, Writ-
ing – review & editing. Peijin Cong: Writing – review & editing.
Junlong Zhou: Writing – review & editing, Validation, Supervision,
Project administration, Methodology, Investigation, Formal analysis,
Data curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Proof for Theorem 2

Recall that the proposed DTORA algorithm can achieve the mini-
mization of problem P3 in each slot. We use 𝛱 to represent a particular
solution. According to Eq. (27), the following inequality holds:
𝛥𝑉 (𝑡) =𝛥(𝑡) + 𝑉 ⋅ E

[

𝑐𝑜𝑠𝑡𝑡|�̃�𝑡]

≤𝛷 +
𝑁
∑

𝑛=1
E
[

�̃�𝑡
𝑛
(

𝑒𝑡𝑛 − 𝐸𝑡,∗
𝑛
)

+ 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡,∗𝑛 |�̃�𝑡]

≤𝛷 +
𝑁
∑

𝑛=1
E
[

�̃�𝑡
𝑛
(

𝑒𝑡𝑛 − 𝐸𝑡,𝛱
𝑛

)

+ 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡,𝛱𝑛 |�̃�𝑡]

(†)
≤𝛷 + 𝜐

𝑁
∑

𝑛=1
�̃�𝑡

𝑛 + 𝑉 (𝑐𝑜𝑠𝑡opt + 𝜐)

(‡)
≤𝛷 + 𝜐

𝑁
∑

𝑛=1
max

{

𝜃𝑛, 𝐸
max
𝐻

}

+ 𝑉 (𝑐𝑜𝑠𝑡opt + 𝜐).

Inequality (†) holds because our policy 𝛱 operates independently of
the virtual battery level �̃�𝑡

𝑛. Furthermore, inequality (‡) is derived by
applying Theorem 1 in conjunction with Lemma 2.

Lemma 2. For ∀𝜐 > 0, there exists a static and randomized strategy 𝛱 ,
applicable to P3, that satisfies the following inequality:
𝑁
∑

𝑖=1
𝐄
[

𝑐𝑜𝑠𝑡𝑡,𝛱𝑛
]

≤ 𝑐𝑜𝑠𝑡opt + 𝜐,

|

|

|

𝐄
[

𝑒𝑡𝑛 − 𝐸𝑡,𝛱
𝑛

]

|

|

|

≤ 𝜐,

where 𝑐𝑜𝑠𝑡opt = lim𝑇→∞
1
𝑇
∑𝑇−1

𝑡=0
∑𝑁

𝑛=1 E
[

𝑐𝑜𝑠𝑡𝑡,opt𝑛

]

 is the theoretically op-
timal cost corresponding to the optimal decision of the system to problem
P2.

Proof. This proof can be obtained by Theorem 4.5 in [51], which is
omitted for brevity. □

When 𝜐 → 0, we have
𝛥𝑉 (𝑡) ≤ 𝛷 + 𝑉 𝑐𝑜𝑠𝑡opt .

Summing over all time slots and taking the average gives
1 E

[

(L (𝑡) − L (𝑡 − 1)) +⋯ + (L (1) − L (0)) |�̃�𝑡]+

𝑇

15
𝑉
𝑇

𝑇−1
∑

𝑡=0

𝑁
∑

𝑛=1
E
[

𝑐𝑜𝑠𝑡𝑡,∗𝑛
]

≤ 𝛷 + 𝑉 𝑐𝑜𝑠𝑡opt .

Since L (0) = 0, as 𝑇 → ∞, we can obtain the upper bound of the
system’s long-term average execution cost:

lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0

𝑁
∑

𝑛=1
E
[

𝑐𝑜𝑠𝑡𝑡,∗𝑛
]

≤ 𝛷
𝑉

+ 𝑐𝑜𝑠𝑡opt .

Then we will get the upper boundary of long-term net harvesting
energy. Assume there exists 𝜚 > 0 and function 𝛺(𝜚) that satisfies the
policy 𝛽, then we have
𝑁
∑

𝑖=1
𝐄
[

𝑐𝑜𝑠𝑡𝑡,𝛽𝑛
]

= 𝛺(𝜚),

𝐄
[

𝑒𝑡𝑛 − 𝐸𝑡,𝛱
𝑛

]

≤ −𝜚.

Substituting into Eq. (27), we have

𝛥𝑉 (𝑡) =𝛥(𝑡) + 𝑉 ⋅
𝑁
∑

𝑛=1
E
[

𝑐𝑜𝑠𝑡𝑡,∗𝑛 |�̃�𝑡]

≤𝛷 + 𝑉 𝛺(𝜚) − 𝜚
𝑁
∑

𝑖=1
�̃�𝑡.

Summing over all time slots and taking the average gives

1
𝑇

𝑇−1
∑

𝑡=0

𝑁
∑

𝑛=1
E
[

�̃�𝑡]

≤ 1
𝜚

{

𝛷 + 𝑉 (𝛺(𝜚)) − 1
𝑇

𝑇−1
∑

𝑡=0

𝑁
∑

𝑛=1
E
[

𝑐𝑜𝑠𝑡𝑡,∗𝑛
]

}

≤ 1
𝜚
{

𝛷 + 𝑉 (𝑐𝑜𝑠𝑡max − 𝑐𝑜𝑠𝑡opt)
}

.

Since ∑𝑇−1
𝑡=0

∑𝑁
𝑛=1 E

[

�̃�𝑡] ≥
∑𝑇−1

𝑡=0
∑𝑁

𝑛=1 E
[

𝑒𝑡𝑛 − 𝐸𝑡
𝑛
]

, we have the upper
boundary of long-term net harvesting energy:

lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0

𝑁
∑

𝑛=1
E
[

𝑒𝑡𝑛 − 𝐸𝑡,∗
𝑛
]

≤ 𝛷 + 𝑉 (𝑐𝑜𝑠𝑡max − 𝑐𝑜𝑠𝑡opt).

Appendix B. Proof for Lemma 1

First prove that 𝐹 (𝑝𝑡𝑛) is monotonically increasing about 𝑝𝑡𝑛. Letting
𝜒 = ℎ𝑡𝑚𝑛𝑝

𝑡
𝑛𝜎

−2, the function can be deformed as

𝐹1(𝜒) =
𝜎2𝜉𝜒

𝐴𝑡
𝑛 log2(1 + 𝜒)

=
𝜎2𝜉 ln 2
𝐴𝑡
𝑛

⋅
𝜒

ln(1 + 𝜒)
.

Taking the first order derivative of 𝐹1(𝜒), we get

𝐹 ′
1(𝜒) =

𝜎2𝜉 ln 2
𝐴𝑡
𝑛

⋅
(1 + 𝜒) ln(1 + 𝜒) − 𝜒

(1 + 𝜒)
[

ln(1 + 𝜒)
]2

.

When 𝜒 > 0, it is easy to see that the denominator of 𝐹 ′
1(𝜒) is greater

than zero. Let 𝐹2(𝜒) = (1 + 𝜒) ln(1 + 𝜒) − 𝜒 . Then for the derivative of
𝐹2(𝜒), we have
𝐹 ′
2(𝜒) = ln(1 + 𝜒).

Since 𝐹2(0) = 0, for 𝜒 > 0, the numerator of 𝐹 ′
1(𝜒) is positive. This

implies that 𝐹1(𝜒) is monotonically increasing when 𝜒 > 0. Given that
𝑝𝑡𝑛 > 0, it follows that 𝐹 (𝑝𝑡𝑛) is monotonically increasing with respect to
𝑝𝑡𝑛. Therefore, the minimum value of 𝐹 (𝑝𝑡𝑛) occurs at 𝑝𝑡𝑛 = 0. Now, we
focus on solving the limit

lim
𝑝𝑡𝑛→0

𝜉ℎ𝑡𝑚𝑛𝑝
𝑡
𝑛

𝐴𝑡
𝑛 log2 𝜀

,

where 𝜀 = 1+ℎ𝑡𝑚𝑛𝑝
𝑡
𝑛𝜎

−2. Using L’Hospital’s rule [52], the numerator and
denominator are simultaneously derived for 𝑝𝑡𝑛 to give

lim
𝑝𝑡𝑛→0

𝜉ℎ𝑡𝑚𝑛
𝐴𝑡
𝑛ℎ𝑡𝑚𝑛

𝜎2𝜀 ln 2

= 𝜎2𝜉𝐴𝑡
𝑛
−1 ln 2.

In the end, the range of values of function 𝐹 (𝑝𝑡) is
(

𝜎2𝜉𝐴𝑡 −1 ln 2,+∞
)

𝑛 𝑛

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
Data availability

Data will be made available on request.

References

[1] A. Wright, Worldwide IDC Global DataSphere Forecast, 2024–2028: AI Ev-
erywhere, But Upsurge in Data Will Take Time, Tech. Rep., Global DataS-
phere, 2024, [Online]. Available: https://www.idc.com/getdoc.jsp?containerId=
US52076424.

[2] J. Mei, L. Dai, Z. Tong, X. Deng, K. Li, Throughput-aware dynamic task offloading
under resource constant for MEC with energy harvesting devices, IEEE Trans.
Netw. Serv. Manag. 20 (3) (2023) 3460–3473.

[3] H. Jiang, X. Dai, Z. Xiao, A. Iyengar, Joint task offloading and resource allocation
for energy-constrained mobile edge computing, IEEE Trans. Mob. Comput. 22 (7)
(2023) 4000–4015.

[4] L. Wu, P. Sun, Z. Wang, Y. Li, Y. Yang, Computation offloading in multi-cell
networks with collaborative edge-cloud computing: A game theoretic approach,
IEEE Trans. Mob. Comput. 23 (3) (2024) 2093–2106.

[5] J. Zhang, Z. Ning, R.H. Ali, M. Waqas, S. Tu, I. Ahmad, A many-objective
ensemble optimization algorithm for the edge cloud resource scheduling problem,
IEEE Trans. Mob. Comput. 23 (2) (2024) 1330–1346.

[6] H. Zhou, K. Jiang, X. Liu, X. Li, V.C. Leung, Deep reinforcement learning for
energy-efficient computation offloading in mobile-edge computing, IEEE Internet
Things J. 9 (2) (2021) 1517–1530.

[7] Q. Ma, H. Xu, H. Wang, Y. Xu, Q. Jia, C. Qiao, Fully distributed task offloading in
vehicular edge computing, IEEE Trans. Veh. Technol. 73 (4) (2024) 5630–5646.

[8] B. Kar, W. Yahya, Y.-D. Lin, A. Ali, Offloading using traditional optimization and
machine learning in federated cloud–edge–fog systems: A survey, IEEE Commun.
Surv. & Tutorials 25 (2) (2023) 1199–1226.

[9] U. Saleem, Y. Liu, S. Jangsher, X. Tao, Y. Li, Latency minimization for D2D-
enabled partial computation offloading in mobile edge computing, IEEE Trans.
Veh. Technol. 69 (4) (2020) 4472–4486.

[10] J. Yang, Z. Guo, J. Luo, Y. Shen, K. Yu, Cloud-edge-end collaborative caching
based on graph learning for cyber-physical virtual reality, IEEE Syst. J. 17 (4)
(2023) 5097–5108.

[11] J. Tang, T. Qin, Y. Xiang, Z. Zhou, J. Gu, Optimization search strategy for task
offloading from collaborative edge computing, IEEE Trans. Serv. Comput. 16 (3)
(2023) 2044–2058.

[12] J. Zhou, K. Cao, X. Zhou, M. Chen, T. Wei, S. Hu, Throughput-conscious energy
allocation and reliability-aware task assignment for renewable powered in-situ
server systems, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 41 (3)
(2021) 516–529.

[13] J. Zhou, X.S. Hu, Y. Ma, J. Sun, T. Wei, S. Hu, Improving availability of multicore
real-time systems suffering both permanent and transient faults, IEEE Trans.
Comput. 68 (12) (2019) 1785–1801.

[14] J. Zhou, T. Wei, M. Chen, X.S. Hu, Y. Ma, G. Zhang, J. Yan, Variation-aware
task allocation and scheduling for improving reliability of real-time mpsocs, in:
Design, Automation & Test in Europe Conference & Exhibition, DATE, 2018, pp.
171–176.

[15] Y. Mao, J. Zhang, K.B. Letaief, Dynamic computation offloading for mobile-edge
computing with energy harvesting devices, IEEE J. Sel. Areas Commun. 34 (12)
(2016) 3590–3605.

[16] Z. Chang, L. Liu, X. Guo, Q. Sheng, Dynamic resource allocation and computation
offloading for IoT fog computing system, IEEE Trans. Ind. Informatics 17 (5)
(2021) 3348–3357.

[17] F. Zhao, Y. Chen, Y. Zhang, Z. Liu, X. Chen, Dynamic offloading and resource
scheduling for mobile-edge computing with energy harvesting devices, IEEE
Trans. Netw. Serv. Manag. 18 (2) (2021) 2154–2165.

[18] G. Zhang, W. Zhang, Y. Cao, D. Li, L. Wang, Energy-delay tradeoff for dynamic
offloading in mobile-edge computing system with energy harvesting devices, IEEE
Trans. Ind. Informatics 14 (10) (2018) 4642–4655.

[19] Y. Mao, J. Zhang, K.B. Letaief, A Lyapunov optimization approach for green
cellular networks with hybrid energy supplies, IEEE J. Sel. Areas Commun. 33
(12) (2015) 2463–2477.

[20] K. Zeng, X. Li, T. Shen, Energy-stabilized computing offloading algorithm for
uavs with energy harvesting, IEEE Internet Things J. 11 (4) (2024) 6020–6031.

[21] X. Hou, J. Zhou, L. Li, M. Zhao, P. Cong, Z. Wu, S. Hu, ILRM: Imitation
learning based resource management for integrated CPU-GPU edge systems with
renewable energy sources, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
44 (6) (2024) 2392–2397.

[22] G. Gao, M. Xiao, J. Wu, H. Huang, S. Wang, G. Chen, Auction-based VM
allocation for deadline-sensitive tasks in distributed edge cloud, IEEE Trans. Serv.
Comput. 14 (6) (2021) 1702–1716.
16
[23] Z. Hu, C. Fang, Z. Wang, S.-M. Tseng, M. Dong, Many-objective opti-
mization based-content popularity prediction for cache-assisted cloud-edge-end
collaborative IoT networks, IEEE Internet Things J. 11 (1) (2024) 1190–1200.

[24] H. Zhou, Z. Zhang, D. Li, Z. Su, Joint optimization of computing offloading and
service caching in edge computing-based smart grid, IEEE Trans. Cloud Comput.
11 (2) (2023) 1122–1132.

[25] H. Xiao, J. Huang, Z. Hu, M. Zheng, K. Li, Collaborative cloud-edge-end task
offloading in MEC-based small cell networks with distributed wireless backhaul,
IEEE Trans. Netw. Serv. Manag. 20 (4) (2023) 4542–4557.

[26] Y. Chen, J. Zhao, Y. Wu, J. Huang, X. Shen, Qoe-aware decentralized task of-
floading and resource allocation for end-edge-cloud systems: A game-theoretical
approach, IEEE Trans. Mob. Comput. 23 (1) (2024) 769–784.

[27] N. Sharma, A. Ghosh, R. Misra, S.K. Das, Deep meta q-learning based multi-
task offloading in edge-cloud systems, IEEE Trans. Mob. Comput. 23 (4) (2024)
2583–2598.

[28] H. Yuan, M. Zhou, Profit-maximized collaborative computation offloading and
resource allocation in distributed cloud and edge computing systems, IEEE Trans.
Autom. Sci. Eng. 18 (3) (2021) 1277–1287.

[29] T. Tang, C. Li, F. Liu, Collaborative cloud-edge-end task offloading with task
dependency based on deep reinforcement learning, Comput. Commun. 209
(2023) 78–90.

[30] W. Fan, X. Liu, H. Yuan, N. Li, Y. Liu, Time-slotted task offloading and resource
allocation for cloud-edge-end cooperative computing networks, IEEE Trans. Mob.
Comput. 23 (8) (2024) 8225–8241.

[31] F. Chen, J. Zhou, X. Xia, Y. Xiang, X. Tao, Q. He, Joint optimization of coverage
and reliability for application placement in mobile edge computing, IEEE Trans.
Serv. Comput. 16 (6) (2023) 3946–3957.

[32] A. Al-Dulaimy, C. Sicari, A.V. Papadopoulos, A. Galletta, M. Villari, M. Ashjaei,
Tolerancer: A fault tolerance approach for cloud manufacturing environments, in:
2022 IEEE 27th International Conference on Emerging Technologies and Factory
Automation, ETFA, IEEE, 2022, pp. 1–8.

[33] Y. Qiu, J. Liang, V.C. Leung, X. Wu, X. Deng, Online reliability-enhanced virtual
network services provisioning in fault-prone mobile edge cloud, IEEE Trans.
Wirel. Commun. 21 (9) (2022) 7299–7313.

[34] J. Li, W. Liang, M. Huang, X. Jia, Reliability-aware network service provisioning
in mobile edge-cloud networks, IEEE Trans. Parallel Distrib. Syst. 31 (7) (2020)
1545–1558.

[35] R. Lin, Z. Zhou, S. Luo, Y. Xiao, X. Wang, S. Wang, M. Zukerman, Distributed
optimization for computation offloading in edge computing, IEEE Trans. Wirel.
Commun. 19 (12) (2020) 8179–8194.

[36] X. Chen, Decentralized computation offloading game for mobile cloud computing,
IEEE Trans. Parallel Distrib. Syst. 26 (4) (2015) 974–983.

[37] J. Zhou, X. Hou, Y. Zeng, P. Cong, W. Jiang, S. Guo, Quality of experience
and reliability-aware task offloading and scheduling for multi-user mobile-edge
computing systems, IEEE Trans. Serv. Comput. (2025) 1–14.

[38] T.X. Tran, D. Pompili, Joint task offloading and resource allocation for multi-
server mobile-edge computing networks, IEEE Trans. Veh. Technol. 68 (1) (2019)
856–868.

[39] M.R. Jan, C. Anantha, N. Borivoje, et al., Digital integrated circuits: a design
perspective, Pearson (2003).

[40] C. Kai, H. Zhou, Y. Yi, W. Huang, Collaborative cloud-edge-end task offloading
in mobile-edge computing networks with limited communication capability, IEEE
Trans. Cogn. Commun. Netw. 7 (2) (2020) 624–634.

[41] X. Tian, H. Meng, Y. Li, P. Miao, P. Xu, Dynamic computation offloading for
green things-edge-cloud computing with local caching, in: IEEE International
Parallel and Distributed Processing Symposium, IPDPS, 2022, pp. 1018–1028.

[42] D. Zhu, R. Melhem, D. Mossé, The effects of energy management on reliability
in real-time embedded systems, in: IEEE/ACM International Conference on
Computer Aided Design, 2004, pp. 35–40.

[43] L. Huang, M.J. Neely, Utility optimal scheduling in energy harvesting networks,
in: Proceedings of the Twelfth ACM International Symposium on Mobile Ad Hoc
Networking and Computing, 2011, pp. 1–11.

[44] Y. Mao, J. Zhang, K.B. Letaief, ARQ with adaptive feedback for energy harvesting
receivers, in: 2016 IEEE Wireless Communications and Networking Conference,
IEEE, 2016, pp. 1–6.

[45] M.J. Neely, L. Huang, Dynamic product assembly and inventory control for
maximum profit, in: 49th IEEE Conference on Decision and Control, CDC, 2010,
pp. 2805–2812.

[46] I.B. Vapnyarskii, Lagrange multipliers, 2001, [1994], Encyclopedia of Math-
ematics, EMS Press. [Online]. Available: https://encyclopediaofmath.org/wiki/
Lagrangian.

[47] S. Strasser, R. Goodman, J. Sheppard, S. Butcher, A new discrete particle
swarm optimization algorithm, in: Proceedings of the Genetic and Evolutionary
Computation Conference 2016, 2016, pp. 53–60.

https://www.idc.com/getdoc.jsp?containerId=US52076424
https://www.idc.com/getdoc.jsp?containerId=US52076424
https://www.idc.com/getdoc.jsp?containerId=US52076424
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb2
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb2
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb2
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb2
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb2
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb3
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb3
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb3
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb3
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb3
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb4
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb4
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb4
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb4
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb4
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb5
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb5
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb5
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb5
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb5
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb6
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb6
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb6
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb6
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb6
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb7
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb7
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb7
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb8
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb8
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb8
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb8
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb8
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb9
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb9
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb9
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb9
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb9
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb10
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb10
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb10
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb10
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb10
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb11
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb11
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb11
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb11
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb11
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb12
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb12
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb12
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb12
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb12
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb12
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb12
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb13
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb13
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb13
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb13
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb13
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb14
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb14
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb14
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb14
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb14
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb14
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb14
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb15
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb15
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb15
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb15
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb15
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb16
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb16
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb16
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb16
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb16
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb17
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb17
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb17
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb17
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb17
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb18
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb18
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb18
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb18
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb18
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb19
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb19
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb19
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb19
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb19
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb20
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb20
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb20
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb21
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb21
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb21
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb21
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb21
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb21
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb21
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb22
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb22
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb22
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb22
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb22
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb23
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb23
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb23
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb23
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb23
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb24
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb24
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb24
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb24
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb24
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb25
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb25
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb25
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb25
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb25
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb26
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb26
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb26
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb26
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb26
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb27
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb27
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb27
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb27
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb27
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb28
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb28
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb28
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb28
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb28
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb29
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb29
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb29
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb29
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb29
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb30
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb30
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb30
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb30
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb30
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb31
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb31
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb31
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb31
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb31
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb32
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb32
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb32
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb32
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb32
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb32
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb32
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb33
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb33
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb33
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb33
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb33
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb34
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb34
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb34
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb34
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb34
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb35
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb35
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb35
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb35
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb35
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb36
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb36
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb36
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb37
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb37
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb37
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb37
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb37
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb38
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb38
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb38
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb38
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb38
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb39
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb39
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb39
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb40
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb40
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb40
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb40
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb40
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb41
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb41
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb41
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb41
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb41
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb42
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb42
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb42
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb42
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb42
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb43
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb43
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb43
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb43
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb43
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb44
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb44
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb44
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb44
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb44
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb45
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb45
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb45
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb45
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb45
https://encyclopediaofmath.org/wiki/Lagrangian
https://encyclopediaofmath.org/wiki/Lagrangian
https://encyclopediaofmath.org/wiki/Lagrangian
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb47
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb47
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb47
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb47
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb47

X. Song et al. Journal of Systems Architecture 167 (2025) 103469
[48] B. Liang, Y. Zhao, Y. Li, A hybrid particle swarm optimization with crisscross
learning strategy, Eng. Appl. Artif. Intell. 105 (2021) 104418.

[49] Z. Tong, J. Cai, J. Mei, K. Li, K. Li, Dynamic energy-saving offloading strategy
guided by Lyapunov optimization for IoT devices, IEEE Internet Things J. 9 (20)
(2022) 19903–19915.

[50] H. Zhao, W. Du, W. Liu, T. Lei, Q. Lei, QoE aware and cell capacity enhanced
computation offloading for multi-server mobile edge computing systems with
energy harvesting devices, in: 2018 IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computing, Scalable Computing & Communica-
tions, Cloud & Big Data Computing, Internet of People and Smart City Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, 2018, pp. 671–678.

[51] M.J. Neely, Stochastic network optimization with application to communication
and queueing systems, Synth. Lect. Commun. Networks (2010) 1–211, [Online].
Available: http://dx.doi.org/10.2200/s00271ed1v01y201006cnt007.

[52] E.W. Weisstein, L’hospital’s rule, 2003, [Online]. Available: https://mathworld.
wolfram.com/.

Xiaozhu Song received the B.S. degree in Computer Science
and Technology from the Nanjing University of Science
and Technology, Nanjing, China, in 2024. She is currently
pursuing her M.S. degree with Nanjing University of Science
and Technology, Nanjing, China. Her research interests
include edge computing, and federated learning.

Qianpiao Ma received the B.S. degree in computer science
and the Ph.D. degree in computer software and theory from
the University of Science and Technology of China, Hefei,
China, in 2014 and 2022, respectively. He is currently an
Associate Professor at the School of Computer Science and
Engineering, Nanjing University of Science and Technol-
ogy, Nanjing, China. His primary research interests include
federated learning, mobile-edge computing, and distributed
machine learning.

Gan Zheng is a senior engineer with the Big Data Tech-
nology Development Department of the Guangxi Zhuang
Autonomous Region Information Center. His research inter-
ests are in the area of big data, edge computing and IoT,
where he has published a dozen of refereed papers.
17
Liying Li received her Ph.D. degree from the Department
of Computer Science and Technology, East China Normal
University, Shanghai, China, in 2022. She is currently an
Assistant Professor with the Nanjing University of Science
and Technology, Nanjing, China. Her current research inter-
ests are in the areas of cyber–physical systems, IoT resource
management, and distributed artificial intelligence.

Peijin Cong received the B.S. and Ph.D. degrees in Com-
puter Science from East China Normal University, Shanghai,
China, in 2016 and 2021, respectively. She is currently an
Associate Professor at the School of Computer Science and
Engineering, Nanjing University of Science and Technology,
Nanjing, China. Her research interests are in the areas of
cloud computing, service computing, and IoT, where she
has published 30 refereed papers, more than half of which
appeared in IEEE/ACM Transaction papers.

Junlong Zhou received a Ph.D. degree in Computer Science
from East China Normal University, Shanghai, China, in
2017. He was a Visiting Scholar with the University of
Notre Dame, Notre Dame, IN, USA, during 2014–2015. He
is currently an Associate Professor at the Nanjing University
of Science and Technology, Nanjing, China. His research
interests include edge computing, cloud computing, and
embedded systems, where he has published 120 refereed
papers, including over 40 in premier IEEE/ACM Transac-
tions. He has been an Associate Editor for the Journal
of Sustainable Computing: Informatics and Systems, the
Journal of Circuits, Systems, and Computers, and the IET
Cyber–Physical Systems: Theory & Applications, a Subject
Area Editor for the Journal of Systems Architecture: Em-
bedded Software Design, and a Guest Editor for 8 Journals
such as ACM Transactions on Cyber–Physical Systems. He
received the Best Paper Awards from IEEE iThings 2020,
IEEE CPSCom 2022, and IEEE ICITES 2024.

http://refhub.elsevier.com/S1383-7621(25)00141-9/sb48
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb48
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb48
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb49
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb49
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb49
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb49
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb49
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb50
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb50
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb50
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb50
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb50
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb50
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb50
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb50
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb50
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb50
http://refhub.elsevier.com/S1383-7621(25)00141-9/sb50
http://dx.doi.org/10.2200/s00271ed1v01y201006cnt007
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/
https://mathworld.wolfram.com/

	Dynamic task offloading and resource allocation for energy-harvesting end–edge–cloud computing systems
	Introduction
	Related Work
	Static Task Offloading and Resource Allocation in EEC Computing
	Dynamic Task Offloading and Resource Allocation in EEC Computing

	System Model
	Network Model
	Communication Model
	ED-Edge Communication
	Edge-Cloud Communication

	Computation Model
	Reliability Model
	Problem Formulation

	Lyapunov-based Dynamic Task Offloading and Resource Allocation Algorithm
	Methodology Framework
	Decoupling the Original Problem by Lyapunov Optimization
	Optimal Energy Harvesting
	Optimal Resource Allocation
	Local Execution
	Edge Server Execution
	Cloud Server Execution

	MDPSO-based Task Offloading Algorithm
	The Overall DTORA Framework

	Evaluation
	Experimental Settings
	Benchmarks and Performance Metrics
	Experimental Results
	Algorithm Comparison
	The Impact of Parameters
	Large-scale system simulations

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Proof for Theorem 2
	Appendix B. Proof for Lemma 1
	Data availability
	References

