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 A B S T R A C T

In end–edge–cloud (EEC) computing, end devices (EDs) offload compute-intensive tasks to nearby edge servers 
or the cloud server to alleviate processing burdens and enable a flexible computing architecture. However, 
resource constraints and dynamic environments pose significant challenges for EEC task offloading and resource 
allocation, including real-time requirements, unreliable task execution, and limited battery energy, especially 
in energy harvesting (EH) systems, in which battery energy remains unstable due to its inherent fluctuations. 
Existing task offloading and resource allocation approaches often fail to address these challenges holistically, 
leading to degraded performance and potential task execution failures. In this paper, we propose a novel task 
offloading and resource allocation method for EH EEC computing, aiming to optimize long-term performance 
by minimizing delay and energy consumption while ensuring task execution reliability and battery energy 
stability. Specifically, we formulate task offloading and resource allocation as a cost optimization problem 
under constraints such as ED capacity, task reliability, and energy consumption. To solve this problem, we 
first leverage Lyapunov optimization to decouple the original time-dependent problem. Then we derive optimal 
closed-form solutions for computation and transmission power resource allocation. Based on these solutions, 
we propose a multiple discrete particle swarm optimization algorithm to determine task offloading decision. 
Extensive experiments demonstrate the superiority of our method in balancing delay, execution reliability, and 
energy stability under varying conditions.
1. Introduction

With the development of the Internet of Things (IoT), massive 
amounts of data are generated by IoT devices. According to IDC’s 
forecast, the generated data will reach 159.2 ZB in 2024 and is expected 
to more than double by 2028, reaching 384.6 ZB, with a compound 
annual growth rate of 24.4% [1]. End devices (EDs) have become an 
indispensable part of people’s daily lives and are expected to process 
the rapidly increasing data. However, EDs typically use processors and 
batteries with limited capacity [2]. Processing all generated data on 
these devices can be time- and energy-consuming. To this end, task 
offloading technology is proposed to alleviate the processing burden 
on EDs, where the compute-intensive tasks are offloaded to powerful 
remote computing platforms for processing [3].
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Currently, task offloading solutions can be categorized into three 
main types. The most traditional solution for task offloading is based on 
cloud computing, i.e., end-cloud offloading, where tasks are offloaded 
to the cloud server for remote execution. The powerful processing 
capabilities of cloud servers enable them to execute offloaded tasks 
rapidly [4]. However, the distance between cloud servers and EDs 
may cause network congestion and increased latency, negatively af-
fecting the execution of tasks for real-time applications [5]. To address 
these issues, end-edge offloading [6,7] which is developed from edge 
computing, has emerged as an alternative solution, leveraging nearby 
edge servers for task execution. This proximity enables shorter re-
sponse times than the end-cloud offloading solution, making it ideal 
for applications requiring real-time task processing. Nevertheless, the 
computation resources of edge servers are relatively limited [8], which 
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Table 1
Comparison of approaches in EEC.
 Approach Optimize execution

delay
Optimize energy
consumption

Consider dynamic
environments

Consider 
reliability

Consider Battery
Energy Stability

 

 WBS [22] ✓  
 MaOPPC [23] ✓  
 CCORAM [24] ✓ ✓  
 IOR [25] ✓ ✓  
 GDTO [26] ✓ ✓  
 DMQTO [27] ✓ ✓ ✓  
 SMBO [28] ✓ ✓ ✓  
 TPDRTO [29] ✓ ✓ ✓  
 TSDA [30] ✓ ✓ ✓  
 EAP-OPT [31] ✓ ✓  
 TOLERANCER [32] ✓ ✓  
 RES [33] ✓ ✓  
 OAPCR [34] ✓ ✓  
 Ours ✓ ✓ ✓ ✓ ✓  
can lead to long execution times for compute-intensive tasks. End–
edge–cloud (EEC) offloading [4] combines the benefits of both cloud 
computing and edge computing by distributing tasks among EDs, edge 
servers, and the cloud server. This collaboration establishes a flexible 
framework, meeting the varying task executing requirements of diverse 
applications, such as delay and energy constraints.

However, there are still some challenges in existing EEC offloading 
research.

• Real-time Requirement: Many ED’s applications (e.g., autono
mous driving and augmented reality) typically have stringent 
timing constraints that require them to be completed before their 
deadlines. In the EEC system, task offloading needs to guarantee 
low latency to ensure the real-time requirement [9–11]. How-
ever, the distributed and multi-tiered nature of EEC architecture 
makes it difficult to achieve consistently low delay, since data 
traverses multiple nodes, each with varying network conditions 
and workloads.

• Unreliable Task Execution: In the dynamic environments of 
EEC computing, task execution reliability is frequently impacted 
by factors like resource competition and performance fluctua-
tions [12–14]. This often decreases the probability of successfully 
completing tasks without suffering transient failures, especially 
during peak usage periods.

• Limited Battery Energy: EDs such as robots, cameras, and
portable weather stations typically rely on batteries with lim-
ited capacity for power, leading to potential energy shortages 
during periods of high-demand operation [15–18]. Some studies 
focus on energy harvesting (EH) techniques to capture renewable 
resources from the environment and convert them into battery 
energy [19–21]. However, the inherent randomness in EH can 
cause fluctuations in the ED’s energy supply. For example, robots 
may suspend their mission execution in low energy conditions, 
which reduces task execution efficiency and potentially shortens 
battery lifespan.

In recent years, a wide range of approaches for EEC computing 
have been proposed to address the above challenges. A comprehensive 
comparison of these approaches is summarized in Table  1. For exam-
ple, [22,23] explore the collaborative task offloading methods aimed at 
reducing delays, while [24,25] propose methods that jointly optimize 
delay and energy consumption. However, these methods are primarily 
designed for static scenarios and face significant limitations in dy-
namic scenarios. To address this, [27–29] propose offloading methods 
tailored for dynamic scenarios. Although these methods are adaptive 
to dynamic environments, they ignore task execution reliability, po-
tentially leading to slow responses and incomplete execution. Only a 
few studies [31–34] address reliability issues in dynamic scenarios to 
ensure reliable task execution. However, these studies mainly focus on 
2 
enhancing task execution reliability and do not adequately consider 
the critical factors related to task offloading, such as delay and energy 
consumption.

Unlike previous studies, this paper solves the delay, energy, and reli-
ability concerns in EEC computing systems simultaneously. Specifically, 
we propose a dynamic task offloading and resource allocation method 
for energy harvesting end–edge–cloud (EH EEC) computing systems, 
aiming to optimize the long-term performance (i.e., minimizing delay 
and energy consumption) while ensuring task execution reliability and 
battery energy stability. The main contributions of this paper are 
summarized as follows.

• We formulate the task offloading problem to minimize cost (in-
cluding task execution delay and dropping penalty) within the 
EH-EEC architecture, subject to constraints such as ED capacity, 
task execution reliability, and energy consumption, to meet the 
real-time requirement, ensure reliable task execution, as well as 
manage the limited and unstable battery energy.

• We design an efficient algorithm to solve the formulated task 
offloading problem. Specifically, we first decompose the original 
time-coupled problem by leveraging the Lyapunov optimization 
to address unstable battery energy in the EH architecture. Next, 
we derive the optimal closed-form solutions for the resource 
allocation of EDs and edge servers, including computation and 
transmission power. Based on these solutions, we propose a mul-
tiple discrete particle swarm optimization (MDPSO) algorithm to 
determine the task offloading strategy.

• We validate the efficacy of the proposed method through ex-
tensive simulation experiments. The experimental results, with 
varying parameters (e.g., task generation probabilities and control 
parameters), show the superiority of the proposed method in 
terms of balancing delay, task execution reliability, and battery 
energy stability.

We organize this paper as follows. Section 2 reviews the related 
work. Section 3 introduces the specific system models and defines the 
optimization problem based on the models. Section 4 describes our 
proposed dynamic task offloading and resource allocation algorithms 
in detail. Section 5 conducts simulation experiments to evaluate the 
performance of the proposed algorithm from various aspects, followed 
by the concluding remarks in Section 6.

2. Related work

This section classifies related work on task offloading and resource 
allocation into two categories: static and dynamic, all within the con-
text of EEC computing.
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2.1. Static task offloading and resource allocation in EEC computing

EEC computing is an architecture that effectively integrates edge 
and cloud computing, providing enhanced flexibility and effectively 
addressing diverse user requirements. Most research on EEC comput-
ing focuses on optimizing task offloading and resource allocation by 
reducing delay and minimizing energy consumption. For example, 
Gao et al. [22] proposed an auction-based virtual machine allocation 
mechanism to address the resource allocation problem for deadline-
sensitive tasks. Hu et al. [23] introduced a knowledge-mining-based 
multi-objective evolutionary algorithm to reduce the delay in content 
popularity prediction tasks. Zhou et al. [24] proposed a joint optimiza-
tion method for computation offloading and service caching in an edge 
computing-based smart grid, aiming to minimize the task execution 
time and energy consumption. Xiao et al. [25] developed an itera-
tive task offloading method to minimize energy consumption under 
given delay constraints. Chen et al. [26] designed a game-based de-
centralized approach that maximizes the quality of user experience by 
optimizing resource allocation. However, these methods often assume 
static conditions, making them less effective in adapting to dynamic 
scenarios.

2.2. Dynamic task offloading and resource allocation in EEC computing

To address the various challenges posed by dynamic environments, 
several studies have designed task offloading and resource allocation 
methods for this scenario. For instance, Sharma et al. [27] proposed 
a deep meta-reinforcement learning approach to address the multi-
task offloading problem in EEC systems. Yuan et al. [28] presented a 
simulated annealing-based migratory bird algorithm for dynamic task 
offloading. Tang et al. [29] designed an offloading algorithm that incor-
porates task prioritization and deep reinforcement learning to optimize 
delay and energy consumption jointly. Fan et al. [30] developed a time-
sliced method for task offloading and resource allocation, effectively 
minimizing task execution delay under energy consumption constraints. 
Unlike [27–30], Chen et al. [31] investigated the joint optimization 
problem of coverage and reliability, in which they proposed an optimal 
and approximate solution based on an integer programming method. 
Al-Dulaimy et al. [32] addressed software and hardware failures by 
monitoring node states. Qiu et al. [33] considered the time-varying 
faults and proposed an online approximation method to ensure fault 
tolerance in deploying virtual network functions (VNFs). Similarly, Li
et al. [34] enhanced the reliability of VNFs by deploying both primary 
and backup instances.

However, the aspect of green EH in dynamic EEC computing re-
mains unexplored, which provides an innovative solution for EDs that 
traditionally depend on battery power. In light of the above, we explore 
the integration of EH technology for dynamic task offloading and 
resource allocation in EEC computing, focusing on optimizing both 
delay and energy consumption.

3. System model

In this section, we first introduce the network model, the communi-
cation model, the computation model, and the reliability model of our 
system. Then, we formulate the dynamic task offloading and resource 
allocation problem in EEC computing. Some important notations in this 
paper are listed in Table  2.

3.1. Network model

Consider an EEC computing system based on small cell networks. 
As shown in Fig.  1, the system is divided into three layers: the cloud 
layer, the edge layer, and the end layer. The cloud layer consists of a 
high-performance cloud server. The edge layer comprises 𝑀 small cell 
networks, each with one edge server. The set of edge servers is denoted 
3 
Fig. 1. Architecture of an EEC Computing renewable energy-powered computing 
system.

Table 2
Key notations.
 Symbol Semantics  
  The set of EDs {𝐷1 , 𝐷2 ,… , 𝐷𝑁}  
  The set of edge servers {𝑆1 , 𝑆2 ,… , 𝑆𝑀}  
 𝑚 The set of EDs within the range of 𝑆𝑚  
 𝜏 𝑡𝑛 The task generated by 𝐷𝑛 at slot 𝑡  
 𝑥𝑡𝑛 The offloading decision of 𝜏 𝑡𝑛  
 𝑝𝑡𝑛 The transmission power of 𝐷𝑛 at slot 𝑡  
 𝑓 𝑡

𝑛 The CPU frequency assigned to 𝜏 𝑡𝑛 for execution  
 𝑁 𝑡

𝑚 The number of tasks received by 𝑆𝑚 at slot 𝑡  
 𝐿𝑡

𝑛,𝑢∕𝐿
𝑡
𝑛,𝑑 The end-edge uplink/downlink transmission delay of task 𝜏 𝑡𝑛  

 𝐿𝑡
𝑛,𝑈∕𝐿

𝑡
𝑛,𝐷 The edge-cloud uplink/downlink transmission delay of task 𝜏 𝑡𝑛  𝐿𝑡

𝑛,comp The computation delay of task 𝜏 𝑡𝑛  
 𝐿𝑡

𝑛,tran The transmission delay of task 𝜏 𝑡𝑛  
 𝐸𝑡

𝑛 The energy consumption of task 𝜏 𝑡𝑛  
 𝑅𝑡

𝑛 The execution reliability of task 𝜏 𝑡𝑛  

as  = {𝑆𝑚|𝑚 ∈ {1, 2,… ,𝑀}}. Each cell network also deploys a base 
station to receive and distribute tasks. The end layer consists of 𝑁 EDs 
 =

{

𝐷𝑛|𝑛 ∈ {1, 2,… , 𝑁}
}

, which are randomly distributed in different 
small cell networks. Each ED is equipped with an EH component and 
fully powered by the collected renewable energy, such as solar energy. 
The set of EDs within the service range of edge server 𝑆𝑚 is denoted as 
𝑚, satisfying  =

⋃

1≤𝑚≤𝑀 𝑚 and 𝑚1

⋂

𝑚2
= ∅, ∀𝑚1 ≠ 𝑚2.

To address the uncertainty in energy harvesting, we divide time into 
discrete time slots  = {0, 1,…}, each with a fixed length of 𝛶  [20]. 
At the beginning of each slot, each ED generates a task following an 
independent and identically distributed (i.i.d.) Bernoulli process [15] 
with a constant probability 𝜌 ∈ [0, 1], which is the same value through-
out system operation. For instance, when 𝜌 = 0.3, it indicates a 30% 
probability for an ED to generate a task at the beginning of any given 
time slot. Let 𝜁 𝑡𝑛 denote the indicator of whether 𝐷𝑛 generates a task 
at slot 𝑡 or not. Specifically, 𝜁 𝑡𝑛 = 1 indicates the presence of a task, 
denoted by 𝜏𝑡𝑛, while 𝜁 𝑡𝑛 = 0 means that no task is generated at 
slot 𝑡. The generated tasks typically have real-time constraints that 
require them to be completed before their deadlines (i.e., within a 
time slot). These tasks can be processed locally or offloaded to an 
edge/cloud server for execution, or they may be dropped if the ED’s 
battery energy is insufficient. We define the task offloading decision 
as 𝑥𝑡𝑛 = {𝑥𝑡𝑛,𝑙 , 𝑥

𝑡
𝑛,𝑒, 𝑥

𝑡
𝑛,𝑐 , 𝑥

𝑡
𝑛,𝑑}

⊤, where 𝑥𝑡𝑛,𝑙 , 𝑥𝑡𝑛,𝑒, 𝑥𝑡𝑛,𝑐 , 𝑥𝑡𝑛,𝑑 ∈ {0, 1}. When 
𝑥𝑡𝑛,𝑙 = 1, 𝑥𝑡𝑛,𝑒 = 1, 𝑥𝑡𝑛,𝑐 = 1, or 𝑥𝑡𝑛,𝑑 = 1, it indicates that the task 
is executed on the ED, edge server, cloud server, or that the task is 
dropped, respectively. Clearly, the constraint 𝑥𝑡𝑛,𝑙 +𝑥𝑡𝑛,𝑒 +𝑥𝑡𝑛,𝑐 +𝑥𝑡𝑛,𝑑 = 𝜁 𝑡𝑛
holds for ∀𝐷 ∈ .
𝑛
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3.2. Communication model

When a task is offloaded, it is transmitted to the edge or cloud 
server via the wireless network. To avoid channel interference, we 
employ orthogonal frequency division multiple access [9] for wireless 
communications among EDs, edge servers, and the cloud server.

3.2.1. ED-edge communication
Let 𝐵𝑚,𝑢 denote the available end-edge uplink bandwidth at edge 

server 𝑆𝑚. The transmission power of ED 𝐷𝑛 for uplink transmission at 
slot 𝑡 is represented as 𝑝𝑡𝑛, and the channel gain between 𝐷𝑛 and 𝑆𝑚 at 
slot 𝑡 is denoted as ℎ𝑡𝑚𝑛. It is assumed that the wireless channel remains 
stationary in the same slot and varies among different slots [15]. At 
each slot 𝑡, there are 𝑁 𝑡

𝑚 tasks uploaded from the EDs in set 𝑚 to 
edge server 𝑆𝑚, i.e., 𝑁 𝑡

𝑚 =
∑

𝐷𝑛∈𝑚
𝑥𝑡𝑛,𝑒. As a result, for ∀𝐷𝑛 ∈ 𝑚, 

the achievable uplink transmission rate of task 𝜏𝑡𝑛 can be given by the 
Shannon–Hartley formula [35] 

𝑟𝑡𝑛,𝑢 =
𝐵𝑚,𝑢

𝑁 𝑡
𝑚

log2(1 +
ℎ𝑡𝑚𝑛𝑝

𝑡
𝑛

𝜎2
), (1)

where 𝜎2 is the noise power. Then the uplink transmission delay of task 
𝜏𝑡𝑛 from 𝐷𝑛 to 𝑆𝑚 can be calculated as 

𝐿𝑡
𝑛,𝑢 =

𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
, (2)

where 𝐴𝑡
𝑛 is the data amount of task 𝜏𝑡𝑛. Since the size of the output 

results is significantly smaller than that of the input data, the down-
link energy consumption is excluded from the ED’s energy model, as 
discussed in [36–38]. As a result, the energy consumption of 𝐷𝑛 during 
transmission to the edge server can be expressed as 

𝐸𝑡
𝑛,𝑢 = 𝑝𝑡𝑛𝐿

𝑡
𝑛,𝑢 =

𝑝𝑡𝑛𝐴
𝑡
𝑛

𝑟𝑡𝑛,𝑢
. (3)

After task execution at the edge server, the result is sent back to the 
corresponding ED. Let 𝑃 𝑡

𝑚 denote the downlink transmission power of 
edge server 𝑆𝑚. Similarly, the downlink transmission rate 𝑟𝑡𝑛,𝑑 from 
server 𝑆𝑚 to ED 𝐷𝑛 can also be obtained by the Shannon capacity. 
Therefore, the downlink transmission delay for the execution result of 
task 𝜏𝑡𝑛 from 𝑆𝑚 to 𝐷𝑛 is 

𝐿𝑡
𝑛,𝑑 =

𝑈 𝑡
𝑛

𝑟𝑡𝑛,𝑑
, (4)

where 𝑈 𝑡
𝑛 is the data amount of execution result of task 𝜏𝑡𝑛.

3.2.2. Edge-cloud communication
The edge server communicates with the cloud via the wired net-

work [29], where the transmission rate is denoted as 𝑟𝑚,𝑈 . For ∀𝐷𝑛 ∈
𝑚, the uplink transmission delay of task 𝜏𝑡𝑛 from 𝑆𝑚 to the cloud server 
is 

𝐿𝑡
𝑛,𝑈 =

𝐴𝑡
𝑛

𝑟𝑚,𝑈
. (5)

The downlink transmission rate from the cloud server to edge server 
𝑆𝑚 can be denoted as 𝑟𝑚,𝐷. Once processed by the cloud, the result of 
𝜏𝑡𝑛 is returned to edge server 𝑆𝑚, and the downlink transmission delay 
is 

𝐿𝑡
𝑛,𝐷 =

𝑈 𝑡
𝑛

𝑟𝑚,𝐷
. (6)

3.3. Computation model

As mentioned earlier, each task can be executed locally on the 
ED, or offloaded to the edge/cloud for remote execution. We use 
the Dynamic Voltage and Frequency Scaling (DVFS) technique [39] 
to adjust the chip voltage and ensure the CPU frequency in a slot. 
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Let 𝑓 𝑡
𝑛,𝑙, 𝑓 𝑡

𝑛,𝑒 and 𝑓 𝑡
𝑛,𝑐 denote the CPU frequency allocated for task 𝜏𝑡𝑛

when the task is executed at ED, the edge server and the cloud server, 
respectively. Then the computation delay of 𝜏𝑡𝑛 can be expressed as 

𝐿𝑡
𝑛,comp =

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛
, (7)

where 𝐶 𝑡
𝑛 is the number of CPU cycles to complete task 𝜏𝑡𝑛, which is 

assumed to be fixed across different execution locations as tasks are 
executed on CPU cores [25,40,41]. Additionally, 𝑓 𝑡

𝑛 satisfies 

𝑓 𝑡
𝑛 =

⎧

⎪

⎨

⎪

⎩

𝑓 𝑡
𝑛,𝑙 , 𝑥𝑡𝑛,𝑙 = 1

𝑓 𝑡
𝑛,𝑒, 𝑥𝑡𝑛,𝑒 = 1

𝑓 𝑡
𝑛,𝑐 , 𝑥𝑡𝑛,𝑐 = 1

. (8)

Specially, if task 𝜏𝑡𝑛 is executed locally (i.e., 𝑥𝑡𝑛,𝑙 = 1), the computation 
energy consumption of 𝐷𝑛 is given by 

𝐸𝑡
𝑛,𝑙 = 𝑘(𝑓 𝑡

𝑛,𝑙)
2𝐶 𝑡

𝑛, (9)

where 𝑘 is a constant depending on the processor architecture of the 
ED [15].

3.4. Reliability model

Consider soft faults caused by transient failures during task execu-
tion, which generally do not damage the device hardware. According 
to [13], the initial task execution failure rate for task 𝜏𝑡𝑛 can be 
expressed as 

𝜇(𝑓 𝑡
𝑛) = 𝜇010

𝛿(𝑓max−𝑓𝑡𝑛 )
𝑓max−𝑓min , (10)

where 𝜇0 is the fault rate when the device operates at the maximum 
frequency 𝑓max, 𝛿 is a constant indicating the sensitivity of the fault rate 
to voltage scaling, and 𝑓max/𝑓min is the maximum/minimum processing 
speed of the system. Let 𝑊 𝑡

𝑛  denote the vulnerability factor of task 
𝜏𝑡𝑛 [12], which is used to evaluate the reliability of the task. According 
to the exponential distribution model of faults [42], the execution 
reliability of task 𝜏𝑡𝑛 is given as 

𝑅𝑡
𝑛 = 𝑒

−𝜇(𝑓 𝑡
𝑛)𝑊

𝑡
𝑛
𝐶𝑡
𝑛

𝑓𝑡𝑛 . (11)

Therefore, the system reliability can be calculated as the product of the 
reliability of all tasks, 𝑖.𝑒. , 

𝑅𝑡 =
∏

𝜏𝑡𝑛∈𝛤

𝑅𝑡
𝑛. (12)

3.5. Problem formulation

As discussed, task 𝜏𝑡𝑛 can be executed locally, on an edge server, or 
on the cloud, with corresponding transmission delays in each case. If 
task 𝜏𝑡𝑛 is executed locally (i.e., 𝑥𝑡𝑛,𝑙 = 1), there is no need for offloading, 
and thus, the transmission delay is zero. If task 𝜏𝑡𝑛 is offloaded to the 
associated edge server 𝑆𝑚 for execution (i.e., 𝑥𝑡𝑛,𝑒 = 1), the transmission 
delay includes both the uplink and downlink transmission delays be-
tween 𝐷𝑛 and 𝑆𝑚. If task 𝜏𝑡𝑛 is further offloaded to the cloud server (i.e., 
𝑥𝑡𝑛,𝑐 = 1), the transmission delay includes not only the uplink/downlink 
transmission delays between 𝐷𝑛 and 𝑆𝑚 but also the uplink/downlink 
transmission delays between 𝑆𝑚 and the cloud server. Therefore, the 
total transmission delay of 𝜏𝑡𝑛 is expressed as 

𝐿𝑡
𝑛,tran =

⎧

⎪

⎪

⎨

⎪

⎪

0, 𝑥𝑡𝑛,𝑙 = 1
𝐿𝑡
𝑛,𝑢 + 𝐿𝑡

𝑛,𝑑 , 𝑥𝑡𝑛,𝑒 = 1
𝐿𝑡
𝑛,𝑢 + 𝐿𝑡

𝑛,𝑑 + 𝐿𝑡
𝑛,𝑈 + 𝐿𝑡

𝑛,𝐷, 𝑥𝑡𝑛,𝑐 = 1
𝑡

. (13)
⎩

0, 𝑥𝑛,𝑑 = 1
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According to Eqs. (7) and (13), the total execution delay 𝐿𝑡
𝑛 of task 𝜏𝑛

can be calculated as 
𝐿𝑡
𝑛 =𝐿

𝑡
𝑛,comp + 𝐿𝑡

𝑛,tran

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑙
, 𝑥𝑡𝑛,𝑙 = 1

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑒

+ 𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
+ 𝑈 𝑡

𝑛
𝑟𝑡𝑛,𝑑

, 𝑥𝑡𝑛,𝑒 = 1
𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑐

+ 𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
+ 𝑈 𝑡

𝑛
𝑟𝑡𝑛,𝑑

+ 𝐴𝑡
𝑛

𝑟𝑚,𝑈
+ 𝑈 𝑡

𝑛
𝑟𝑚,𝐷

, 𝑥𝑡𝑛,𝑐 = 1

0, 𝑥𝑡𝑛,𝑑 = 1

.
(14)

Since edge and cloud servers typically have abundant energy re-
sources, we focus only on the energy consumption of EDs. If task 𝜏𝑛
is executed locally (i.e., 𝑥𝑡𝑛,𝑙 = 1), the energy consumption of 𝐷𝑛 is 
equivalent to its local computation energy consumption. In contrast, if 
𝜏𝑛 is offloaded to either the edge server or the cloud server (i.e., 𝑥𝑡𝑛,𝑒 = 1
or 𝑥𝑡𝑛,𝑐 = 1), the energy consumption of 𝐷𝑛 is determined by the energy 
required for uplink transmission. Therefore, according to Eqs. (3) and 
(9), the energy consumption of 𝐷𝑛 for task 𝜏𝑡𝑛 can be expressed as 

𝐸𝑡
𝑛 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑘(𝑓 𝑡
𝑛,𝑙)

2𝐶 𝑡
𝑛, 𝑥𝑡𝑛,𝑙 = 1

𝑝𝑡𝑛𝐴
𝑡
𝑛

𝑟𝑡𝑛,𝑢
, 𝑥𝑡𝑛,𝑒 = 1

𝑝𝑡𝑛𝐴
𝑡
𝑛

𝑟𝑡𝑛,𝑢
, 𝑥𝑡𝑛,𝑐 = 1

0, 𝑥𝑡𝑛,𝑑 = 1

. (15)

We model the energy harvesting process as a continuous process of 
arriving energy packets. Let 𝐸𝑡

𝑛,𝐻  denote the energy collected by 𝐷𝑛
during the slot 𝑡−1, which satisfies the independent homogeneous dis-
tribution in different slots and obeys the distribution 𝐸𝑡

𝑛,𝐻 ∼ 𝑈 (0, 𝐸max
𝐻 ). 

The portion of 𝐸𝑡
𝑛,𝐻  stored by 𝐷𝑛 is denoted as 𝑒𝑡𝑛, which is utilized 

to perform the tasks of slot 𝑡. Following [15,19,43,44], we adopt the 
commonly accepted i.i.d. model to harvest the energy. This model 
captures the stochastic and intermittent nature of renewable energy 
processes. Let 𝑄𝑡

𝑛 denote the battery energy of 𝐷𝑛 at slot 𝑡. Then the 
variation of battery energy between neighboring slots can be calculated 
as 
𝑄𝑡+1

𝑛 = max{𝑄𝑡
𝑛 + 𝑒𝑡𝑛 − 𝐸𝑡

𝑛, 0}. (16)

Task execution delay is widely used to estimate system performance. 
However, the stochastic and intermittent nature of renewable energy 
may cause task dropping. Considering both task execution delay and 
dropping overhead, we define the system execution cost of slot 𝑡 as 
𝑐𝑜𝑠𝑡𝑡 ≜

∑

𝐷𝑛∈
𝑐𝑜𝑠𝑡𝑡𝑛

=
∑

𝐷𝑛∈
𝟏(𝜁 𝑡𝑛 = 1)

{

𝐿𝑡
𝑛 + 𝜆 ⋅ 𝟏( 𝑥𝑡𝑛,𝑑 = 1)

}

,
(17)

where 𝜆 is the penalty for task dropping. Based on the definition, we 
formulate the dynamic task offloading and resource allocation problem 
as

P1 ∶ min
𝑥𝑡𝑛 ,𝑓 𝑡

𝑛 ,𝑝𝑡𝑛 ,𝑒𝑡𝑛
lim
𝑇→∞

1
𝑇
E

[ 𝑇
∑

𝑡=1
𝑐𝑜𝑠𝑡𝑡

]

𝐬.𝐭. 𝑓 𝑡
𝑛,𝑙 ≤ 𝑓max

𝑙 , ∀𝐷𝑛 ∈ , 𝑡 ∈  (18a)
∑

𝐷𝑛∈𝑚

𝑥𝑡𝑛,𝑒𝑓
𝑡
𝑛,𝑒 ≤ 𝑓max

𝑚,𝑒 , ∀𝑆𝑚 ∈  , 𝑡 ∈  (18b)

𝑝𝑡𝑛 ≤ 𝑝max
𝑙 , ∀𝐷𝑛 ∈ , 𝑡 ∈  (18c)

0 ≤ 𝐸𝑡
𝑛 ≤ 𝐸max, ∀𝐷𝑛 ∈ , 𝑡 ∈  (18d)

0 ≤ 𝑒𝑡𝑛 ≤ 𝐸𝑡
𝑛,𝐻 , ∀𝐷𝑛 ∈ , 𝑡 ∈  (18e)

𝐿𝑡
𝑛 ≤ 𝛶 , ∀𝐷𝑛 ∈ , 𝑡 ∈  (18f)

𝑅𝑡 ≥ 𝑅th, 𝑡 ∈  (18g)
5 
Fig. 2. Overview of our proposed method.

𝑥𝑡𝑛,𝑙 + 𝑥𝑡𝑛,𝑒 + 𝑥𝑡𝑛,𝑐 + 𝑥𝑡𝑛,𝑑 = 𝜁 𝑡𝑛, ∀𝐷𝑛 ∈ , 𝑡 ∈  (18h)

𝑥𝑡𝑛,𝑙 , 𝑥
𝑡
𝑛,𝑒, 𝑥

𝑡
𝑛,𝑐 , 𝑥

𝑡
𝑛,𝑑 ∈ {0, 1}, ∀𝐷𝑛 ∈ , 𝑡 ∈  (18i)

Eq. (18a) indicates that the CPU frequency of each ED cannot exceed 
its maximum allowed frequency when performing the task locally. 
Eq. (18b) indicates that the computation resources allocated to the tasks 
executed on each edge server should be within its capacity. Eq. (18c) 
ensures that the transmission power of each ED during task offloading 
remains within its maximum power limit. Eq. (18d) represents that the 
energy consumption of each ED in slot 𝑡 does not exceed the maximum 
discharge threshold of the battery 𝐸max. Eq. (18e) indicates that the net 
energy harvested by the ED at slot 𝑡 does not exceed the total harvested 
energy. Eq. (18f) is the deadline constraint for the task. Eq. (18g) 
denotes that the reliability of executing all tasks in time slot 𝑡 is not 
lower than the given threshold 𝑅th. Eq. (18h) ensures that tasks can 
only offload to one location. Eq. (18i) is the binary constraint on the 
decision variables. Our objective is to determine the task offloading 
decision 𝑥𝑡𝑛, the CPU frequency 𝑓 𝑡

𝑛, the transmission power 𝑝𝑡𝑛, and the 
net energy harvested 𝑒𝑡𝑛 to minimize the long term system execution 
cost under all the design constraints.

4. Lyapunov-based dynamic task offloading and resource alloca-
tion algorithm

4.1. Methodology framework

This section addresses the problem of minimizing execution costs in 
an EEC computing system and proposes a Dynamic Task Offloading and
Resource Allocation (DTORA) framework. The proposed framework 
contains three key components: Lyapunov-based decoupling, convex 
optimization-based resource allocation, and multiple discrete particle 
swarm optimization (MDPSO) based task offloading, as illustrated in 
Fig.  2. Specifically, to address the time-dependent nature and energy 
harvesting uncertainties of the original problem P1, we apply Lyapunov 
optimization by adding a lower energy bound, which ensures that the 
output energy in each slot is either zero or above this bound [15]. 
Based on this, we transform the problem P1 into a modified prob-
lem P2. According to Lyapunov optimization theory, minimizing the 
Lyapunov drift plus penalty function enables the transformation of 
multi-slot coupled constraints into a modified single-slot problem for 
resolution [19]. Thus, by constructing a Lyapunov drift-plus-penalty 
function and deriving its upper bound, we ensure the stability of 
battery energy, which is denoted as P3. Furthermore, we decompose 
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P3 into two subproblems: the energy harvesting problem P𝐸𝐻  and 
the task offloading and resource allocation problem P𝑇𝑂𝑅𝐴. The P𝐸𝐻
can be solved using linear programming due to the linear property of 
the objective function of P𝐸𝐻 , while the P𝑇𝑂𝑅𝐴 can be split into the 
resource allocation problem P𝑅𝐴 and the task offloading problem P𝑇𝑂. 
Before solving the resource allocation problem, we first initialize the 
offloading decision for all tasks. Then we design a convex optimization 
algorithm to perform resource allocation for the offloaded tasks. This 
process involves numerical analyses, such as derivatives and Lagrange 
multipliers, to derive closed-form solutions for the optimal transmis-
sion power and frequency resource allocation among local EDs, edge 
servers, and the cloud server. Lastly, we design the MDPSO algorithm 
to determine the locations for task execution, which can efficiently 
find the high-quality task offloading decision that achieves satisfactory 
performance while meeting all the constraints.

Note that our proposed Lyapunov optimization framework dynam-
ically balances energy supply and demand to stabilize battery levels, 
ensuring sufficient energy reserves for task execution under varying 
energy harvesting conditions. If the energy is critically low, task drop-
ping is allowed in our framework to save energy. But our algorithms 
would adaptively adjust task offloading decisions and local processing 
strategies to avoid task dropping.

4.2. Decoupling the original problem by Lyapunov optimization

Given the inherently stochastic nature of the energy harvested in 
each slot, the battery energy levels of EDs fluctuate over time [19]. 
These fluctuations introduce coupling among system decisions across 
different slots, complicating the problem-solving process. According 
to [15], the coupling between decisions in different slots can be mit-
igated by imposing a battery energy bound. Thus, in our analysis, 
we introduce a lower bound 𝐸min on the battery output energy for 
each slot and construct constraint (19a). Specifically, this constraint 
ensures that the output energy in each slot is either zero or above 𝐸min. 
This modification allows for per-slot optimization without considering 
historical energy dependencies. The feasibility has been rigorously 
proved in [15] (Proposition 1). In this way, P1 can be reformulated 
as follows. 

P2 ∶ min
𝑥𝑡𝑛 ,𝑓 𝑡

𝑛 ,𝑝𝑡𝑛 ,𝑒𝑡𝑛
lim
𝑇→∞

1
𝑇
E

[ 𝑇
∑

𝑡=1
𝑐𝑜𝑠𝑡𝑡

]

𝐬.𝐭. (18a)–(18c), (18e)–(18i)
𝐸𝑡
𝑛 ∈ {0} ∪ {𝐸min, 𝐸max}. (19a)

Next, we address problem P2 using the Lyapunov optimization 
theory. The standard Lyapunov optimization approach assumes that the 
operations across different time slots are independent and identically 
distributed. However, due to the time-dependent nature of system 
decisions, the direct application of the original Lyapunov optimization 
method is infeasible. To address this issue, we introduce a weighted 
perturbation method, which is an effective technique for handling 
the time dependence of decisions [45]. Specifically, we denote the 
maximum energy consumed by the ED 𝐷𝑛 as 

�̃�max
𝑛 = min

{

max
𝑡∈

{

𝑘(𝑓 𝑡
𝑛,𝑙)

2𝐶 𝑡
𝑛, 𝑝

max
𝑙 𝛶

}

, 𝐸max
}

. (20)

According to [15], we introduce a perturbation parameter 𝜃𝑛 for 𝐷𝑛 as 
a tuning knob to prevent battery energy from hitting boundaries (0 or 
𝐸max), denoted as 

𝜃𝑛 ≥ �̃�max
𝑛 + 𝑉 𝜆 ⋅ 𝐸min−1 , (21)

where 𝑉  is a weighted control parameter for task execution delay. We 
define the virtual battery energy queue �̃�𝑡

𝑛 for the EH device 𝐷𝑛. In 
Lyapunov optimization, by stabilizing �̃�𝑡  around zero, we can achieve 
𝑛

6 
the stability of the actual battery energy 𝑄𝑡
𝑛. The virtual energy queue 

�̃�𝑡
𝑛 can be expressed as 

�̃�𝑡
𝑛 = 𝑄𝑡

𝑛 − 𝜃𝑛, (22)

where 𝑄𝑡
𝑛 is the battery energy as given in Eq. (16). By controlling the 

virtual energy queue �̃�𝑡
𝑛 and the control parameter 𝑉 , our goal is to 

minimize the Lyapunov drift plus penalty function [19]. This approach 
can ensure the stability of the energy queue around the designated 
threshold. Based on this, we build the quadratic Lyapunov function as 

L (𝑡) = 1
2

𝑁
∑

𝑛=1
(�̃�𝑡

𝑛)
2 = 1

2

𝑁
∑

𝑛=1
(𝑄𝑡

𝑛 − 𝜃𝑛)
2. (23)

Furthermore, the Lyapunov drift function can be derived as 

𝛥(𝑡) = E
[

L (𝑡 + 1) − L (𝑡)|�̃�𝑡] , (24)

where �̃�𝑡 =
[

�̃�𝑡
1,… , �̃�𝑡

𝑁
] is the set of virtual energy queues for all EDs 

at slot 𝑡. We can obtain the upper bound of 𝛥(𝑡) as in the following 
theorem. 

Theorem 1. There exists an upper bound for 𝛥(𝑡), i.e.,

𝛥(𝑡) ≤ 𝛷 +
𝑁
∑

𝑛=1
�̃�𝑡

𝑛E
[

𝑒𝑡𝑛 − 𝐸𝑡
𝑛|�̃�

𝑡] ,

where 𝛷 = 1
2
∑𝑁

𝑛=1

[

(𝐸max
𝐻 )2 + (𝐸max)2

]

.

Proof.  Combining Eqs. (16), (22) and (24), we derive the Lyapunov 
drift

𝛥(𝑡) =E
[

L (𝑡 + 1) − L (𝑡)|�̃�𝑡]

=1
2

𝑁
∑

𝑛=1
E
[

(�̃�𝑡+1
𝑛 )2 − (�̃�𝑡

𝑛)
2
|�̃�𝑡]

=1
2

𝑁
∑

𝑛=1
E
[

(�̃�𝑡
𝑛 + 𝑒𝑡𝑛 − 𝐸𝑡

𝑛)
2 − (�̃�𝑡

𝑛)
2
|�̃�𝑡]

≤1
2

𝑁
∑

𝑛=1
E
[

(𝑒𝑡𝑛)
2 + (𝐸𝑡

𝑛)
2 + 2�̃�𝑡

𝑛(𝑒
𝑡
𝑛 − 𝐸𝑡

𝑛)|�̃�
𝑡
]

. (25)

Recall that the upper bound of 𝑒𝑡𝑛 is 𝐸max
𝐻 , and the upper bound of 𝐸𝑡

𝑛

is 𝐸max. Setting 𝛷 = 1
2
∑𝑁

𝑛=1

[

(𝐸max
𝐻 )2 + (𝐸max)2

]

, it is obvious that 

𝛥(𝑡) ≤ 𝛷 +
𝑁
∑

𝑛=1
�̃�𝑡

𝑛E
[

𝑒𝑡𝑛 − 𝐸𝑡
𝑛|�̃�

𝑡] . □ (26)

By extending the Lyapunov drift to an optimization problem, our 
objective is to minimize an upper bound on the following drift-plus-
penalty expression in each time slot

𝛥𝑉 (𝑡) =𝛥(𝑡) + 𝑉 ⋅ E
[

𝑐𝑜𝑠𝑡𝑡|�̃�𝑡]

≤𝛷 +
𝑁
∑

𝑛=1
E
[

�̃�𝑡
𝑛(𝑒

𝑡
𝑛 − 𝐸𝑡

𝑛) + 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛|�̃�
𝑡] . (27)

In Eq. (27), 𝛷 is a constant, so P2 is further represented as a minimiza-
tion of ∑𝑁

𝑛=1 E
[

�̃�𝑡
𝑛(𝑒

𝑡
𝑛 − 𝐸𝑡

𝑛) + 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛|�̃�
𝑡], i.e., problem P3. 

P3 ∶ min
𝑥𝑡𝑛 ,𝑓 𝑡

𝑛 ,𝑝𝑡𝑛 ,𝑒𝑡𝑛

𝑁
∑

𝑛=1

[

�̃�𝑡
𝑛(𝑒

𝑡
𝑛 − 𝐸𝑡

𝑛) + 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛
]

𝐬.𝐭. (18a)–(18c), (18e)–(18i), (19a)

We can solve the original problem by minimizing P3 per time slot. 
Before proceeding with its solution, we present the following theorem 
to show that the solution obtained by our algorithm approximates the 
theoretical solution of the problem P2.
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Theorem 2. The long-term average execution delay and long-term net 
collected energy have upper bounds, i.e.,

lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0

𝑁
∑

𝑛=1
E
[

𝑐𝑜𝑠𝑡𝑡,∗𝑛
]

≤ 𝛷
𝑉

+ 𝑐𝑜𝑠𝑡opt , (29)

lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0

𝑁
∑

𝑛=1
E
[

𝑒𝑡𝑛 − 𝐸𝑡,∗
𝑛
]

≤ 𝛷 + 𝑉 (𝑐𝑜𝑠𝑡max − 𝑐𝑜𝑠𝑡opt ), (30)

where ∗ indicates the high-quality solution found by our algorithm, and 
𝑐𝑜𝑠𝑡𝑡,∗𝑛  is the corresponding execution cost of the solution. 𝑐𝑜𝑠𝑡max =
𝑁𝑐𝑜𝑠𝑡max

𝑛  is the system’s maximum execution cost. 𝑐𝑜𝑠𝑡opt is the cost 
corresponding to the theoretically optimal solution to the problem P2.

Proof.  Due to page limit, the proof of Theorem  2 is provided in 
Appendix  A. □

Theorem  2 shows that the bound of the cost performance of problem 
P3 is close to that of problem P2. Next, we divide the problem P3 into 
two parts for optimization, the energy harvesting part �̃�𝑡

𝑛𝑒
𝑡
𝑛 and the 

execution costing part −�̃�𝑡
𝑛𝐸

𝑡
𝑛 +𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛. We design the optimal energy 

harvesting and the optimal task offloading and resource allocation 
algorithms to handle these two parts, respectively.

4.3. Optimal energy harvesting

The optimal harvested energy of 𝐷𝑛 can be determined by solving 
the following linear programming problem
P𝐸𝐻 ∶min

𝑒𝑡𝑛
�̃�𝑡

𝑛𝑒
𝑡
𝑛

𝐬.𝐭. (18e)
Let 𝑒𝑡∗𝑛  denote the optimal solution of P𝐸𝐻 . It is obvious that when 

�̃�𝑡
𝑛 ≤ 0, i.e., 𝑄𝑡

𝑛 ≤ 𝜃𝑛, the optimal strategy is to maximize the harvested 
energy, i.e., setting 𝑒𝑡∗𝑛 = 𝐸𝑡

𝑛,𝐻 . This means that 𝐷𝑛 should fully harvest 
the available energy in the slot 𝑡. Conversely, when �̃�𝑡

𝑛 > 0, i.e., 𝑄𝑡
𝑛 >

𝜃𝑛, the optimal strategy is to minimize the energy input, resulting in 
𝑒𝑡∗𝑛 = 0, implying that 𝐷𝑛 will not harvest energy in the slot 𝑡. Thus, we 
have 

𝑒𝑡𝑛 =

{

𝐸𝑡
𝑛,𝐻 , �̃�𝑡

𝑛 ≤ 0
0, �̃�𝑡

𝑛 > 0
. (31)

Further, we can derive the range of values of 𝑄𝑡
𝑛 by the following 

theorem. 

Theorem 3. According to the optimal energy harvesting strategy, there 
exists an upper bound on the battery energy of 𝐷𝑛, i.e., 𝑄𝑡

𝑛 ∈
[

0, 𝜃𝑛 + 𝐸max
𝐻

]

, 
∀𝑡 ∈  .

Proof.  It is obvious that 𝑄𝑡
𝑛 ∈

[

0, 𝜃𝑛 + 𝐸max
𝐻

] is true when 𝑡 = 0. 
When 𝑡 = 𝑇 , we assume that the induction hypothesis holds, i.e., 
𝑄𝑇

𝑛 ∈
[

0, 𝜃𝑛 + 𝐸max
𝐻

]

.

• If 𝑄𝑇
𝑛 ≤ 𝜃𝑛, from Eq. (31), 𝑒𝑇𝑛 = 𝐸𝑇

𝑛,𝐻  holds. Thus, 𝑄𝑇
𝑛 + 𝑒𝑇 ∗𝑛 ≤

𝜃𝑛 + 𝑒𝑇 ∗𝑛 ≤ 𝜃𝑛 + 𝐸max
𝐻 . According to Eq. (16), we have 𝑄𝑇+1

𝑛 ≤
𝑄𝑇

𝑛 + 𝑒𝑇 ∗𝑛 ≤ 𝜃𝑛 + 𝐸max
𝐻 .

• If 𝜃𝑛 < 𝑄𝑇
𝑛 ≤ 𝜃𝑛 + 𝐸max

𝐻 , from Eq. (31), it holds 𝑒𝑇 ∗𝑛 = 0. Then we 
have 𝑄𝑇+1

𝑛 ≤ 𝑄𝑇
𝑛 ≤ 𝜃𝑛 + 𝐸max

𝐻 .

In conclusion, when 𝑡 = 𝑇 + 1, 𝑄𝑇+1
𝑛 ∈

[

0, 𝜃𝑛 + 𝐸max
𝐻

]

. We com-
plete the mathematical induction, i.e., ∀𝑡 ∈  , it holds that 𝑄𝑡

𝑛 ∈
[

0, 𝜃𝑛 + 𝐸max
𝐻

]

. □

4.4. Optimal resource allocation

After solving the energy harvesting part of P3, we solve the execu-
tion cost part, which can be expressed as the following problem.

P𝑇𝑂𝑅𝐴 ∶ min
𝑥𝑡𝑛 ,𝑓 𝑡

𝑛 ,𝑝𝑡𝑛

𝑁
∑

𝑛=1

[

−�̃�𝑡
𝑛𝐸

𝑡
𝑛 + 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛

]

𝐬.𝐭. (18a)–(18c), (18f)–(18i), (19a)

7 
Algorithm 1: Optimal Resource Allocation
Input: Current slot ℎ𝑡𝑚𝑛,𝐻 𝑡

𝑚, 𝑁
𝑡
𝑚, 𝑁

𝑡, task set 𝛤 , a given fixed 
task offloading decision 𝑋𝑡

Output: Resource allocation decision
1 for Each ED do
2 if Task executing locally then
3 Calculate the optimal frequency 𝑓 𝑡∗

𝑛,𝑙 using Eq. (32);
4 else if Task executing at edge then
5 Calculate the optimal transmission power 𝑝𝑡∗𝑛  using Eq. 

(33);
6 Calculate the optimal frequency allocation for edge 

servers 𝑓 𝑡∗
𝑛,𝑒 using Eq.  (34);

7 else if Task executing at cloud then
8 Calculate the optimal transmission power 𝑝𝑡∗𝑛  using Eq. 

(33);
9 else if Dropped or no-generated tasks then
10 Continue;

11 return Resource allocation decision;

It should be noted that once the task offloading strategy is deter-
mined, P𝑇𝑂𝑅𝐴 can be reframed as a resource allocation problem P𝑅𝐴. 
The resource allocation for tasks executed at the local, edge, and cloud 
levels, as well as for dropped tasks, is independent of each other. In 
other words, these four cases are fully decoupled, which enables us to 
decompose P𝑅𝐴 into four independent subproblems. Specifically, when 
task 𝜏𝑡𝑛 is dropped, the objective of P𝑅𝐴 simplifies to a constant 𝑉 𝜆. 
Therefore, we will only discuss the other three cases in the following. 
The proposed resource allocation strategy is formally described in
Algorithm 1.

4.4.1. Local execution
For each task 𝜏𝑡𝑛 executed locally on 𝐷𝑛, we aim to obtain the 

optimal CPU frequency for 𝐷𝑛, which is expressed as

P𝑅𝐴,𝑙 ∶min
𝑓 𝑡
𝑛,𝑙

− �̃�𝑡
𝑛𝑘
(

𝑓 𝑡
𝑛,𝑙

)2
+ 𝑉 ⋅

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑙

𝐬.𝐭. (18a), (18f), (19a)
We first derive the feasible range of P𝑅𝐴,𝑙. From Eqs. (14) and (18f), 

𝐿𝑡
𝑛 = 𝐶 𝑡

𝑛
𝑓 𝑡
𝑛,𝑙

≤ 𝛶 , thus the local device’s frequency satisfies 𝑓 𝑡
𝑛,𝑙 ≥ 𝐶 𝑡

𝑛
𝛶 . 

Additionally, from Eqs. (18a) and (19a), we have 𝑓 𝑡
𝑛,𝑙 ≤ 𝑓max

𝑙  and 
√

𝐸min

𝑘𝐶 𝑡
𝑛

≤ 𝑓 𝑡
𝑛,𝑙 ≤

√

𝐸max

𝑘𝐶 𝑡
𝑛
, respectively. Therefore, we can derive the 

lower and upper bounds of 𝑓 𝑡
𝑛,𝑙 as 𝑓 𝑡

𝑛,𝐿 = max
{√

𝐸min

𝑘𝐶 𝑡
𝑛
, 𝐶

𝑡
𝑛
𝛶

}

 and 𝑓 𝑡
𝑛,𝑈 =

min
{√

𝐸max

𝑘𝐶 𝑡
𝑛
, 𝑓max

𝑙

}

, respectively.
Let the objective function of P𝑅𝐴,𝑙 be 𝐹 (𝑓 𝑡

𝑛,𝑙) = −�̃�𝑡
𝑛𝑘

(

𝑓 𝑡
𝑛,𝑙

)2
+ 𝑉 ⋅

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑙
. By taking the derivative of 𝐹 (𝑓 𝑡

𝑛,𝑙), we have 𝐹 ′(𝑓 𝑡
𝑛,𝑙) =

−2�̃�𝑡
𝑛𝑘𝑓

𝑡
𝑛,𝑙𝐶

𝑡
𝑛 − 𝑉 𝐶 𝑡

𝑛

𝑓 𝑡
𝑛,𝑙

2 . When �̃�𝑡
𝑛 ≥ 0, 𝐹 ′(𝑓 𝑡

𝑛,𝑙) < 0 holds. Therefore, 
𝐹 (𝑓 𝑡

𝑛,𝑙) is monotonically decreasing, and the optimal value of 𝑓 𝑡
𝑛,𝑙 is 

𝑓 𝑡∗
𝑛,𝑙 = 𝑓 𝑡

𝑛,𝑈 . When �̃�𝑡
𝑛 < 0, we set 𝐹 ′(𝑓 𝑡

𝑛,𝑙) = 0 and find the extremal 

point 𝑓 𝑡
𝑛,𝑙 =

(

−𝑉
2�̃�𝑡

𝑛𝑘

)
1
3 . The value of 𝑓 𝑡

𝑛,𝑙 is discussed as follows.

• If 𝑓 𝑡
𝑛,𝑙 ≤ 𝑓 𝑡

𝑛,𝐿, i.e., �̃�𝑡
𝑛 ≤ −𝑉

2𝑘(𝑓 𝑡
𝑛,𝐿)

3 , then 𝐹 (𝑓 𝑡
𝑛,𝑙) is monotonically 

increasing, and we have 𝑓 𝑡∗
𝑛,𝑙 = 𝑓 𝑡

𝑛,𝐿.
• If 𝑓 𝑡

𝑛,𝐿 < 𝑓 𝑡
𝑛,𝑙 < 𝑓 𝑡

𝑛,𝑈 , i.e., 
−𝑉

2𝑘(𝑓 𝑡
𝑛,𝐿)

3 < �̃�𝑡
𝑛 < −𝑉

2𝑘(𝑓 𝑡
𝑛,𝑈 )3 , then 𝐹 (𝑓 𝑡

𝑛,𝑙)

reaches the minimal value at 𝑓 𝑡
𝑛,𝑙, and 𝑓 𝑡∗

𝑛,𝑙 = 𝑓 𝑡
𝑛,𝑙.

• If 𝑓 𝑡
𝑛,𝑙 ≥ 𝑓 𝑡

𝑛,𝑈 , i.e., 
−𝑉

2𝑘(𝑓 𝑡
𝑛,𝑈 )3 ≤ �̃�𝑡

𝑛 < 0, then 𝐹 (𝑓 𝑡
𝑛,𝑙) is monotonically 

decreasing, and we have 𝑓 𝑡∗ = 𝑓 𝑡 .
𝑛,𝑙 𝑛,𝑈
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In conclusion, the optimal allocation of local frequency is 

𝑓 𝑡∗
𝑛,𝑙 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓 𝑡
𝑛,𝐿, �̃�𝑡

𝑛 ≤
−𝑉

2𝑘(𝑓 𝑡
𝑛,𝐿)

3

𝑓 𝑡
𝑛,𝑙 ,

−𝑉
2𝑘(𝑓 𝑡

𝑛,𝐿)
3 < �̃�𝑡

𝑛 <
−𝑉

2𝑘(𝑓 𝑡
𝑛,𝑈 )3

𝑓 𝑡
𝑛,𝑈 , �̃�𝑡

𝑛 ≥
−𝑉

2𝑘(𝑓 𝑡
𝑛,𝑈 )3

. (32)

4.4.2. Edge server execution
Let ̂𝑡

𝑚 represent the set of EDs offloading tasks to the edge server 
𝑆𝑚 at slot 𝑡. For each edge server 𝑆𝑚, the resource allocation problem 
can be represented as

P𝑅𝐴,𝑒 ∶ min
𝑓 𝑡
𝑛,𝑒 ,𝑝𝑡𝑛

∑

𝐷𝑛∈̂𝑡
𝑚

−�̃�𝑡
𝑛
𝑝𝑡𝑛𝐴

𝑡
𝑛

𝑟𝑡𝑛,𝑢
+ 𝑉

(

𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
+

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑒

+
𝑈 𝑡
𝑛

𝑟𝑡𝑛,𝑑

)

𝐬.𝐭. (18b), (18c), (18f), (19a)
The objective of P𝑅𝐴,𝑒 can be expressed as the sum of three terms: 
−�̃�𝑡

𝑛
𝑝𝑡𝑛𝐴

𝑡
𝑛

𝑟𝑡𝑛,𝑢
+𝑉 𝐴𝑡

𝑛
𝑟𝑡𝑛,𝑢
, 𝑉 𝐶 𝑡

𝑛
𝑓 𝑡
𝑛,𝑒
, and 𝑉 𝑈 𝑡

𝑛
𝑟𝑡𝑛,𝑑
. Notably, the third term is a constant. 

To optimize the first two terms, we determine the optimal transmission 
power and the optimal frequency assignment separately.

Optimal Transmission Power. If task 𝜏𝑡𝑛 is offloaded, it is trans-
mitted to the edge server over the wireless channel. The optimal 
transmission power allocation problem for 𝐷𝑛 is expressed as

P𝑅𝐴,𝑒𝑝 ∶min
𝑝𝑡𝑛

− �̃�𝑡
𝑛
𝑝𝑡𝑛𝐴

𝑡
𝑛

𝑟𝑡𝑛,𝑢
+ 𝑉 ⋅

𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
𝐬.𝐭. (18c), (18f), (19a)
We first derive the range of 𝑝𝑡𝑛𝑟𝑡𝑛,𝑢

−1 by the following lemma. 

Lemma 1. The function 𝐻(𝑝𝑡𝑛) = 𝑝𝑡𝑛𝑟
𝑡
𝑛,𝑢

−1 is monotonically increasing with 
respect to 𝑝𝑡𝑛, and it takes values in the range 

(

𝜎2𝜉𝐴𝑡
𝑛
−1 ln 2,+∞

)

, where 
𝜉 = 𝐴𝑡

𝑛𝑁
𝑡
𝑚
(

𝐵𝑚,𝑢ℎ𝑡𝑚𝑛
)−1.

Proof.  Due to page limit, the detailed proof is provided in Appendix 
B.1 □

Based on Lemma  1, we proceed to derive the optimal transmission 
power 𝑝𝑡∗𝑛 . As a preliminary step, we first derive the feasible range of 
P𝑅𝐴,𝑒𝑝. From Eq. (18f), 𝐿𝑡

𝑛 = 𝐴𝑡
𝑛𝑟

𝑡
𝑛,𝑢

−1 ≤ 𝛶  implies that the transmission 
power satisfies 𝑝𝑡𝑛 ≥ 𝜎2

ℎ𝑡𝑚𝑛
(2𝜉ℎ𝑡𝑚𝑛𝛶−1−1). From Eq. (18c), we also have 𝑝𝑡𝑛 ≤

𝑝max
𝑙 . Additionally, from Eq. (19a), the inequality 𝐸min ≤ 𝑝𝑡𝑛𝐴

𝑡
𝑛𝑟

𝑡
𝑛,𝑢

−1 ≤
𝐸max holds. Solving this inequality yields the bounds 𝑝𝑡

𝑛,𝐸min ≤ 𝑝𝑡𝑛 ≤
𝑝𝑡𝑛,𝐸max . Note that 𝑝𝑡𝑛,𝐸min  and 𝑝𝑡𝑛,𝐸max  cannot be expressed in closed form. 
In conclusion, we derive the lower and upper bounds of 𝑝𝑡𝑛 as

𝑝𝑡𝑛,𝐿 =

{

max {𝑝𝑡𝑛,𝛶 , 𝑝
𝑡
𝑛,𝐸min}, 𝜉𝜎2 ln 2 < 𝐸min

𝑝𝑡𝑛,𝛶 , 𝜉𝜎2 ln 2 ≥ 𝐸min ,

and

𝑝𝑡𝑛,𝑈 =

{

min {𝑝max
𝑙 , 𝑝𝑡𝑛,𝐸max}, 𝜉𝜎2 ln 2 < 𝐸max

0, 𝜉𝜎2 ln 2 ≥ 𝐸max ,

respectively, where 𝑝𝑡𝑛,𝛶 = 𝜎2

ℎ𝑡𝑚𝑛
(2𝜉ℎ𝑡𝑚𝑛𝛶−1 − 1).

For ease of presentation, the first term of the objective of P𝑅𝐴,𝑒 is 
denoted as 𝐹 (𝑝𝑡𝑛) = −�̃�𝑡

𝑛
𝑝𝑡𝑛𝐴

𝑡
𝑛

𝑟𝑡𝑛,𝑢
+𝑉 ⋅

𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
. By taking the derivative of 𝐹 (𝑝𝑡𝑛), 

we have

𝐹 ′(𝑝𝑡𝑛) =
𝜉ℎ𝑡𝑚𝑛
log22 𝜀

⋅ 𝐺(𝑝𝑡𝑛),

where 𝐺(𝑝𝑡𝑛) = −�̃�𝑡
𝑛 log2 𝜀 + (�̃�𝑡

𝑛𝑝
𝑡
𝑛 − 𝑉 ) ℎ𝑡𝑚𝑛

𝜎2𝜀 ln 2  and 𝜀 = 1 + ℎ𝑡𝑚𝑛𝑝
𝑡
𝑛𝜎

−2.

1 The range of function 𝐻(𝑝𝑡𝑛) is derived from [15]. Since the proof is not 
provided in [15], we prove it in the paper.
8 
When �̃�𝑡
𝑛 ≥ 0, it holds 𝐹 ′(𝑝𝑡𝑛) < 0. Therefore, 𝐹 (𝑝𝑡𝑛) is monotonically 

decreasing, and the optimal value of 𝑝𝑡𝑛 is 𝑝𝑡∗𝑛 = 𝑝𝑡𝑛,𝑈 . When �̃�𝑡
𝑛 < 0, 

the derivative of 𝐺(𝑝𝑡𝑛) indicates that 𝐺(𝑝𝑡𝑛) is monotonically increasing. 
Additionally, 𝐺(0) = −𝑉 ℎ𝑡𝑚𝑛

𝜎2 ln 2  and lim𝑝𝑡𝑛→+∞ 𝐺(𝑝𝑡𝑛) = +∞. Therefore, there 
exists �̂�𝑡𝑛 ∈ (0,+∞) making 𝐹 ′(𝑝𝑡𝑛) = 0. The value of �̂�𝑡𝑛 is discussed as 
follows.

• If �̂�𝑡𝑛 ≤ 𝑝𝑡𝑛,𝐿, then 𝐹 (𝑝𝑡𝑛) is monotonically increasing, and we have 
𝑝𝑡∗𝑛 = 𝑝𝑡𝑛,𝐿.

• If 𝑝𝑡𝑛,𝐿 < �̂�𝑡𝑛 < 𝑓 𝑡
𝑛,𝑈 , then 𝐹 (𝑝𝑡𝑛) reaches a minimal value at �̂�𝑡𝑛, and 

𝑝𝑡∗𝑛 = �̂�𝑡𝑛.
• If �̂�𝑡𝑛 ≥ 𝑝𝑡𝑛,𝑈 , then 𝐹 (𝑝𝑡𝑝) is monotonically decreasing, and we have 
𝑝𝑡∗𝑛 = 𝑝𝑡𝑛,𝑈 .

In conclusion, the optimal transmission power of 𝐷𝑛 is 

𝑝𝑡∗𝑛 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑡𝑛,𝑈 , �̃�𝑡
𝑛 ≥ 0 or �̃�𝑡

𝑛 < 0, 𝑝𝑡′𝑛 ≥ 𝑝𝑡𝑛,𝑈
𝑝𝑡′𝑛 , �̃�𝑡

𝑛 < 0, 𝑝𝑡𝑛,𝐿 < 𝑝𝑡′𝑛 < 𝑝𝑡𝑛,𝑈
𝑝𝑡𝑛,𝐿, �̃�𝑡

𝑛 < 0, 𝑝𝑡′𝑛 ≤ 𝑝𝑡𝑛,𝐿

. (33)

Optimal Frequency Allocation. For an edge server 𝑆𝑚, multiple 
offloaded tasks compete for computation resources within a given time 
slot. The optimal frequency allocation problem for 𝑆𝑚 is expressed as

P𝑅𝐴,𝑒𝑓 ∶min
𝑓 𝑡
𝑛,𝑒

∑

𝐷𝑛∈̂𝑡
𝑚

𝑉 ⋅
𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑒

𝐬.𝐭. (18b), (18f), (19a)
According to Eq. (18b), the computation resources allocated to each 

task 𝜏𝑡𝑛 by the edge server at slot 𝑡 are interdependent, making it 
infeasible to determine the optimal allocated frequency for each task in-
dependently. To address this issue, we employ the Lagrange Multiplier 
method that transforms a complex optimization problem with multiple 
constraints into an unconstrained one [46]. First, we represent the 
resource constraint of the edge server as 𝐻(𝑓 𝑡

𝑛,𝑒) = 𝑓max
𝑚,𝑒 −

∑

𝐷𝑛∈̂𝑡
𝑚
𝑓 𝑡
𝑛,𝑒. 

In general, a higher CPU frequency assigned to a task leads to lower 
task delay and better user experience. Therefore, we assume 𝐻(𝑓 𝑡

𝑛,𝑒) = 0
which indicates that the computing capacity of the edge server is fully 
utilized. Based on this, we construct the Lagrangian function (𝑓 𝑡

𝑛,𝑒, 𝜂) =
∑

𝐷𝑛∈̂𝑡
𝑚
𝑉 ⋅

𝐶 𝑡
𝑛

𝑓 𝑡
𝑛,𝑒

+ 𝜂𝐻(𝑓 𝑡
𝑛,𝑒). By taking the total derivatives of (𝑓 𝑡

𝑛,𝑒, 𝜂), 
we have ′

𝑓 𝑡
𝑛,𝑒

= − 𝑉 𝐶 𝑡
𝑛

(𝑓 𝑡
𝑛,𝑒)2

− 𝜂 and ′
𝜂 = 𝑓max

𝑚,𝑒 −
∑

𝐷𝑛∈̂𝑡
𝑚
𝑓 𝑡
𝑛,𝑒. When 

′
𝑓 𝑡
𝑛,𝑒

= ′
𝜂 = 0, 𝑓 𝑡

𝑛,𝑒 =
√

𝑉 𝐶 𝑡
𝑛

−𝜂  and ∑𝐷𝑛∈̂𝑡
𝑚
𝑓 𝑡
𝑛,𝑒 = 𝑓max

𝑚,𝑒  hold. From this, 

we can obtain ∑𝐷𝑛∈̂𝑡
𝑚

√

𝑉 𝐶 𝑡
𝑛

−𝜂 = 𝑓max
𝑚,𝑒  and √−𝜂 =

∑

𝐷𝑛∈̂𝑡
𝑚

√

𝑉 𝐶 𝑡
𝑛

𝑓max
𝑚,𝑒

. Thus, 
the optimal frequency of task 𝜏𝑡𝑛 can be derived as 

𝑓 𝑡∗
𝑛,𝑒 =

𝑓max
𝑚,𝑒

√

𝑐𝑡𝑛
∑

𝐷𝑛∈̂𝑡
𝑚

√

𝑐𝑡𝑛
. (34)

4.4.3. Cloud server execution
The cloud server typically has significantly greater computation 

power compared to EDs and edge servers. Following [41], we assume 
that each task offloaded to the cloud server is executed with a constant 
CPU frequency. As a result, for each task 𝜏𝑡𝑛 offloaded to the cloud 
server, the optimization problem focuses on determining the optimal 
transmission power for 𝐷𝑛.

P𝑅𝐴,𝑐𝑝 ∶min
𝑝𝑡𝑛

− �̃�𝑡
𝑛
𝑝𝑡𝑛𝐴

𝑡
𝑛

𝑟𝑡𝑛,𝑢
+ 𝑉 ⋅

𝐴𝑡
𝑛

𝑟𝑡𝑛,𝑢
𝐬.𝐭. (18c), (18f), (19a)

Similar to the case of task offloading execution on edge servers, we 
obtain the optimal transmission power 𝑝𝑡∗𝑛  for task offloading execution 
on the cloud server by solving the optimization problem P . For 
𝑅𝐴,𝑐𝑝



X. Song et al. Journal of Systems Architecture 167 (2025) 103469 
brevity, the detailed derivation is omitted here. The 𝑝𝑡∗𝑛  is formulated 
as 

𝑝𝑡∗𝑛 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑡𝑛,𝑈 , �̃�𝑡
𝑛 ≥ 0 or �̃�𝑡

𝑛 < 0, 𝑝𝑡′𝑛 ≥ 𝑝𝑡𝑛,𝑈
𝑝𝑡′𝑛 , �̃�𝑡

𝑛 < 0, 𝑝𝑡𝑛,𝐿 < 𝑝𝑡′𝑛 < 𝑝𝑡𝑛,𝑈
𝑝𝑡𝑛,𝐿, �̃�𝑡

𝑛 < 0, 𝑝𝑡′𝑛 ≤ 𝑝𝑡𝑛,𝐿

. (35)

4.5. MDPSO-based task offloading algorithm

After solving the resource allocation problem, the task offloading 
problem is expressed as
P𝑇𝑂 ∶min

𝑥𝑡𝑛
�̃�𝑡

𝑛(𝑒
𝑡
𝑛 − 𝐸𝑡

𝑛) + 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛

𝐬.𝐭. (18g)–(18i)
Discrete Particle Swarm Optimization (DPSO) algorithm [47] is 

commonly used to obtain discrete task offloading decisions. However, 
the inherent randomness in population initialization may cause DPSO 
to converge local optima. To overcome this shortage, we propose a 
task offloading scheme based on the Multiple Discrete Particle Swarm
Optimization (MDPSO). The MDPSO algorithm divides the population 
of size 𝑆 into 𝛾 smaller sub-populations, each containing 𝑆∕𝛾 par-
ticles. Each sub-population explores offloading decisions in parallel, 
which promotes diversity in the search process. Furthermore, the evo-
lution of sub-populations can be distributed, accelerating the overall 
algorithmic performance. When the offloading decisions of all the sub-
populations converge, crossover and exchange operations are applied 
to the high-quality offloading decisions obtained from the individual 
sub-populations to further improve the solution quality. After that, the 
high-quality solution is selected as the final task offloading decision 
output by the MDPSO algorithm. Fig.  3 gives an example to show the 
different search processes of DPSO and MDPSO.

In the MDPSO algorithm, the particle’s position information 𝑋𝑡 =
[

𝑥𝑡1,… , 𝑥𝑡𝑛,… , 𝑥𝑡𝑁
] represents the task offloading decision at slot 𝑡. 

Specifically, the 𝑛th dimension 𝑥𝑡𝑛 = [𝑥𝑡𝑛,𝑙 , 𝑥
𝑡
𝑛,𝑒, 𝑥

𝑡
𝑛,𝑐 , 𝑥

𝑡
𝑛,𝑑 ]

⊤ of 𝑋𝑡 denotes 
the offloading decision for task 𝜏𝑡𝑛. Each element of 𝑥𝑡𝑛 must satisfy 
the constraints outlined in Eq.  (18h). The particle’s velocity 𝑌 𝑡 =
[

𝑦𝑡1,… , 𝑦𝑡𝑛,… , 𝑦𝑡𝑁
] represents the tendency of the task to be offloaded 

to different execution locations, where each 𝑦𝑡𝑛 is a 4 × 1 vector. The 
velocity update rule is given by 

𝑌 𝑡,𝑘+1 = 𝜔𝑌 𝑡,𝑘 + 𝑐1𝑟1
(

𝑋𝑡,𝑘
𝑏 −𝑋𝑡,𝑘

)

+ 𝑐2𝑟2
(

𝑋𝑡,𝑘
𝑔𝑏 −𝑋𝑡,𝑘

)

, (36)

where 𝑋𝑡,𝑘
𝑏  denotes the better offloading decisions found by particles 

after the 𝑘th iteration, and 𝑋𝑡,𝑘
𝑔𝑏  denotes the high-quality offloading 

decisions found by the sub-populations. 𝜔 is the inertia weight, 𝑐1, 𝑐2
are the learning factors, and 𝑟1, 𝑟2 are random numbers. The particle 
position update rule is 
𝑋𝑡,𝑘+1 = 𝑋𝑡,𝑘 + 𝑌 𝑡,𝑘+1. (37)

To evaluate the quality of offloading decisions, we set the objective of 
problem P3 as the particle’s fitness, i.e., 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘 =

[

�̃�𝑡
𝑛(𝑒

𝑡
𝑛 − 𝐸𝑡

𝑛) + 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡𝑛
]𝑘 . (38)

The proposed MDPSO-based task offloading scheme is detailed in
Algorithm 2. The algorithm begins by dividing the population into sub-
populations to enhance diversity during the evolution process (Line 1). 
Subsequently, we initialize the offloading decisions and the correspond-
ing optimal resource allocations and fitness (Lines 2–4). The algorithm 
iterates over all particles to optimize offloading decisions, terminating 
when the decisions within each sub-population converge (Lines 5–16). 
During each iteration, the velocity and position of particles representing 
offloading decisions are updated according to Eqs. (36) and (37) (Line 
7). Then Algorithm 1 is called to decide the optimal resource allocation 
of 𝑋𝑡,𝑘

𝑗  (Line 8). To ensure the reliability of task execution, a critical 
constraint is imposed: if the reliability associated with a computed deci-
sion does not meet the predefined threshold (Line 11), the fitness value 
9 
Fig. 3. Diagram of standard DPSO and MDPSO. Blue circles denote particles (offloading 
decisions), potential good decisions represent offloading decisions with better fitness, 
and local optima mark the current high-quality offloading decision. In DPSO, particles 
converge to a global high-quality decision (e.g., D1), potentially missing better solutions 
like D2. MDPSO splits particles into sub-populations that independently explore the 
search space, discovering multiple high-quality decisions (e.g., D1, D2, D3, D4, D5). 
MDPSO reduces the risk of local optima and achieves superior offloading decisions. 
(For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

for that decision is set to positive infinity, excluding it from further 
consideration (Line 12). We employ stochastic cross-swapping [48] to 
enable the exchange of high-quality decisions between sub-populations, 
facilitating convergence toward a global optimum by leveraging the 
strengths of diverse local high-quality (Line 18–22). Finally, the al-
gorithm outputs the high-quality task offloading decision 𝑋𝑡∗ (Line 
23).

4.6. The overall DTORA framework

The overall DTORA framework is summarized in Algorithm 3. First, 
the framework uses Lyapunov optimization techniques to decouple the 
original problem. (Lines 1–2). Next, it obtains the task offloading and 
resource allocation strategy for each time slot (Lines 3–8). Specifically, 
the framework determines the optimal energy harvesting strategy (Line 
6) and then calls Algorithm 2 to derive the high-quality task offloading 
decision (Line 7). In Algorithm 2, Algorithm 1 is called to derive the 
optimal resource allocation solution. At the end of each slot, the battery 
power of all EDs is updated for the decision-making of the next slot 
(Line 8).

The time complexity of DTORA is analyzed as follows. Lines 1–2 
are executed once with a constant complexity 𝑂(1). Line 4 iterates over 
𝑁 EDs, resulting in a complexity of 𝑂(|𝑁|). For lines 5–6, the time 
complexity is at most 𝑂(|𝑁|). Line 7 calls Algorithm 2 to solve the task 
offloading problem with a complexity dominated by the configuration 
combinations. In intra-group iteration, each of 𝛾 groups processes 𝑆

𝛾
particles. The velocity and position updates for each group take 𝑆𝛾 ⋅𝑁 ⋅𝜌
and the fitness evaluation for 𝑁 ⋅ 𝜌 tasks requires 𝑂(1) time per task, 
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Algorithm 2: MDPSO based Task Offloading
Input: Current slot environment attributes, task generation 

situation
Output: Task offloading decision

1 Generate a population of size 𝑆 and homogenize the population 
into 𝛾 sub-populations;

2 Initialize all offloading decisions 𝑋𝑡,0
1 , 𝑋𝑡,0

2 ,… , 𝑋𝑡,0
𝑆 ;

3 Call Algorithm 1 to calculate the optimal resource allocation;
4 Update the cost fitness 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘 and the high-quality cost 

fitness 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑏  according to Eq. (38);
5 while |𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑏 − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘−1𝑏 | < 𝜑 do
6 for Each particle 𝑗 do
7 Update 𝑌 𝑡,𝑘

𝑗  and 𝑋𝑡,𝑘
𝑗  according to Eq. (36) and Eq. (37);

8 Call Algorithm 1 to decide the optimal resource 
allocation of 𝑋𝑡,𝑘

𝑗 ;
9 Calculate the task execution reliability 𝑅𝑡,𝑘

𝑗  according to 
Eq.  (11);

10 Calculate 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑗  according to Eq. (38);
11 if 𝑅𝑘

𝑗 < 𝑅th then
12 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑗 = +∞;

13 else if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑗 < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑗,𝑏 then
14 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑗,𝑏 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑗 ;
15 𝑋𝑡,𝑘

𝑖,𝑏 = 𝑋𝑡,𝑘
𝑗 ;

16 Update the global high-quality cost fitness 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘𝑖,𝑔 of each 
sub-population 𝑖;

17 Obtain 𝑋𝑡∗ with the minimum fitness of decision;
18 while ∃𝑋𝑡,𝑘

𝑖1 ,𝑏
≠ 𝑋𝑡,𝑘

𝑖2 ,𝑏
 do

19 𝑋𝑡,𝑘
new = 𝐶𝑟𝑜𝑠𝑠𝑠𝑤𝑎𝑝(𝑋𝑡,𝑘

𝑖1 ,𝑏
, 𝑋𝑡,𝑘

𝑖2 ,𝑏
);

20 if 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘new < 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡∗ then
21 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡∗ = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑡,𝑘new;
22 𝑋𝑡∗ = 𝑋𝑡,𝑘

new;

23 return Task offloading decision 𝑋𝑡∗; 

Algorithm 3: DTORA Framework
1 Set the virtual energy queue based on Eqs. (21) and (22);
2 Obtain the decoupled problem P3 using Eq.  (27);
3 for each slot do
4 Get the system state of the current time slot 𝑡 and the 

generated task set 𝛤 ;
5 for Each ED 𝐷𝑛 do
6 Calculate the optimal energy harvesting 𝑒𝑡∗𝑛  according to 

Eq.  (31);
7 Call Algorithm 2 to derive the task offloading decision 𝑋𝑡∗;
8 Update the battery energy of all EDs according to Eq.  (16);

yielding 𝑆
𝛾 ⋅ 𝑁 ⋅ 𝜌. Over 𝑇  iterations, the total complexity is at most 

𝑇 ⋅2𝛾 ⋅ 𝑆𝛾 ⋅𝑁 ⋅𝜌 = 𝑂(𝑇 ⋅𝑆 ⋅𝑁 ⋅𝜌). For inter-group crossover, exchanging 𝛾
high-quality solutions has complexity 𝑂(𝛾 ⋅𝑁 ⋅𝜌). Therefore, the overall 
complexity of MDPSO is 𝑂(|𝛩|) = 𝑂(𝑇 ⋅𝑆 ⋅𝑁 ⋅ 𝜌) since 𝑇 ⋅𝑆 ≫ 𝛾, where 
|𝛩| = 𝑇 ⋅ 𝑆 ⋅𝑁 ⋅ 𝜌. Here, 𝑇 , 𝑆, 𝑁 , and 𝜌 are the number of iterations, 
particles, EDs, and the task generation probability, respectively. Thus, 
𝛩 represents the configuration combinations of MDPSO. For line 8, the 
time complexity is at most 𝑂(|𝑁|). Therefore, for Algorithm 3, the time 
complexity is at most 𝑂(1)+𝑂(|𝑁|)+𝑂(|𝑁|)+𝑂(𝑇 ⋅𝑀 ⋅𝑁 ⋅𝜌)+𝑂(|𝑁|) =

𝑂(|𝛩|).
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Table 3
Experimental parameters setting.
 Variants Value Variants Value  
 𝑀 5 𝑟𝑚,𝑈 100 Mbps  
 𝜆 2 ms 𝑟𝑚,𝐷 300 Mbps  
 𝛶 2 ms ℎ𝑡

𝑚𝑛 𝑔0(𝑑0∕𝑑)
4  

 𝐸max
𝐻 0.048 mJ 𝑔0 −40 dB  

 𝐸max 2 mJ 𝑑0 1 m  
 𝐸min 0.02 mJ 𝑑 60 m–100 m 
 𝐴𝑡

𝑛 1000 bits 𝜎2 10−13 W  
 𝑈 𝑡

𝑛 200 bits 𝑓max
𝑙 1.5 GHz  

 1 bits-cycles 600–800 𝑝max
𝑙 0.5 w  

 𝑊 𝑡
𝑛 (0,1] 𝑘 10−28  

 𝜇0 10−2 𝑓max
𝑚,𝑒 3 GHz  

 𝛿 3 𝑓 𝑡
𝑛,𝑐 3 GHz  

 𝐵𝑛,𝑢 35 MHz 𝑃𝐻 12 mW  
 𝐵𝑛,𝑑 100 MHz  

5. Evaluation

5.1. Experimental settings

The experimental settings are detailed in Table  3.
(1) Scenario: We conduct an EEC system consisting of 30 EDs, 5 

edge servers (𝑀 = 5), and a cloud server. The system is simulated 
over 3000 time slots, each with a duration of 𝛶 = 2 ms. The same 
value 𝜆 = 2 ms is used for the task drop penalty [15]. The energy 
collected by ED in each slot is uniformly distributed between 0 and 
𝐸max
𝐻 , where 𝐸max

𝐻 = 𝑃𝐻 ⋅ 2𝛶  and the average energy collection power 
is 𝑃𝐻 = 12mW [20]. The maximum/minimum output energy of the 
battery in a slot is 𝐸max = 2 mJ/𝐸min = 0.02 mJ [20]. We evaluate the 
system under five task generation probabilities, i.e., 0.3, 0.5, 0.7, 0.9, 
and 1. Each task 𝜏𝑡𝑛 has a data volume 𝐴𝑡

𝑛 = 1000 bits [49], and returns 
𝑈 𝑡
𝑛 = 200 bits result data upon completion. It requires 600–800 CPU 

cycles to process one bit of data. The fragility factor 𝑊 𝑡
𝑛  of task 𝜏𝑡𝑛 is 

uniformly distributed in the range of (0,1] [14]. The initial failure rate 
is 𝜇0 = 10−2 [42] and the sensitivity constant is 𝛿 = 3 [14].

(2) Communication: We adopt three resource configurations: Low, 
Medium, and High, which are shown in Table  4. In the absence of spe-
cific instructions, the upload/downlink bandwidth 𝐵𝑛,𝑢/𝐵𝑛,𝑑 between 
the EDs and the edge servers are set to 35 MHz and 100 MHz, respec-
tively. The upload/download wired rates 𝑟𝑚,𝑈/𝑟𝑚,𝐷 between edge and 
cloud are set to 100 Mbps and 300 Mbps, respectively. The channel 
power gain ℎ𝑡𝑚𝑛 follows an exponential distribution with a mean value 
of 𝑔0(𝑑0∕𝑑)4, where 𝑔0 = −40 dB, 𝑑0 = 1m is the reference distance, 
and 𝑑 is randomly distributed between [60,100]m. The noise power on 
the receiver side is 𝜎2 = 10−13 W [41]. The maximum CPU frequency, 
the maximum transmit power, and the chip relevance factor of each 
ED are set as 𝑓max

𝑙 = 1.5 GHz [20], 𝑝max
𝑙 = 0.5 W, and 𝑘 = 10−28 [15], 

respectively. The maximum CPU frequencies of the edge servers and 
the allocated CPU frequency of the cloud server are 𝑓max

𝑚,𝑒 = 3 GHz and 
𝑓 𝑡
𝑛,𝑐 = 3 GHz, respectively.

5.2. Benchmarks and performance metrics

We compare the proposed DTORA algorithm with the following 
benchmarks.

• End Only (End): All tasks are executed entirely on the local 
device without any offloading.

• Edge Only (Edge): All tasks are offloaded to an edge server for 
execution.

• Cloud Only (Cloud): All tasks are offloaded to a remote cloud 
server for execution.

• Random Offloading (Random): Randomly generates task of-
floading decisions and applies our proposed optimal energy har-
vesting and resource allocation algorithms to optimize the cost.
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Table 4
Resource configuration.
 Configuration End-Edge

upload bandwidth
End-edge
download bandwidth

Edge-cloud
upload rate

Edge-cloud
download rate

Edge server
CPU frequency

Cloud server
allocation frequency

 Low 25 MHz 80 MHz 80 Mbps 200 Mpbs 2.5 GHz 2.5 GHz
 Medium 35 MHz 100 MHz 100 Mbps 300 Mbps 3.0 GHz 3.0 GHz
 High 45 MHz 120 MHz 120 Mbps 400 Mbps 3.5 GHz 3.5 GHz
Fig. 4. Average execution costs of different algorithms under different 𝜌 and resource configurations.
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Fig. 5. Average execution costs of different algorithms under different 𝜌 and execution reliability.
• Cost Optimal (C-Opt): This method corresponds to the optimal 
policy derived in Theorem  2, formulating P2 as a static problem 
focused on minimizing system cost. It employs a solver to com-
pute the decision without long-term energy constraints, providing 
performance bounds for the problem.

• Lyapunov based Genetic Algorithm (Ly-GA) [50]: This method 
uses Lyapunov optimization to decouple P1 to P3, with GA de-
termining task offloading. In the GA algorithm, our proposed 
optimal energy harvesting and resource allocation algorithms are 
applied to calculate the fitness of the task offloading decision.

• Lyapunov based Discrete Particle Swarm Optimization (Ly-
DPSO): Similarly to Ly-GA, this method employs DPSO algorithm 
to obtain the task offloading decision. In the DPSO algorithm, our 
proposed optimal energy harvesting and resource allocation algo-
rithms are applied to calculate the fitness of the task offloading 
decision.

To assess the performance of our solutions, we utilize the following 
metrics in our numerical evaluation.

• Average Execution Cost: After the EDs execute the offloading de-
cision, we can calculate the average execution cost under different 
algorithms.

• Execution Reliability: We use the numerical values calculated 
by Eq. (12) to assess the execution reliability of the tasks.

• Battery Energy: We measure the battery energy of each ED 
in each slot to assess the effectiveness of DTORA in stabilizing 
battery energy.

5.3. Experimental results

In this section, we first evaluate the impact of the DTORA algorithm 
on the average execution cost, reliability, and battery energy. Then 
we assess the influence of various parameters on our algorithm, e.g., 
the perturbation parameter 𝜃, the weight 𝑉 , and the lower bound of 
the battery output energy 𝐸min. Without loss of generality, we set the 
number of sub-populations 𝛾 = 3 for the subsequent evaluation.

5.3.1. Algorithm comparison
Fig.  4 compares the average execution cost of different algorithms. 

As shown in the figure, the algorithms that involve local execution,
i.e., DTORA, Ly-DPSO, Ly-GA, Random, End, and C-Opt, often incur 
higher initial cost, but tend to stabilize at lower levels over time. For 
example, in Fig.  4(b), the cost of the DTORA algorithm stays around 
6 ms for the first 500 slots and stabilizes around 4 ms after that. This 
is attributed to the initial insufficient battery energy of the ED, which 
leads to low CPU frequency during local execution, causing a high 
execution delay. Additionally, limited battery energy causes frequent 
task dropping, further elevating the cost. As time progresses, the battery 
energy gradually accumulates, enabling a higher CPU frequency for 
local execution and fewer task drops, resulting in lower execution costs. 
12 
Fig. 6. Comparison of runtime for DTORA, Ly-DPSO, Ly-GA, and C-Opt algorithms.

Fig. 7. Performance of DTORA under different 𝛾 values.

Unlike the above algorithms, the Edge and Cloud algorithms maintain a 
stable cost value throughout the process. Compared to other algorithms, 
the C-Opt always achieves the lowest execution cost, as it achieves an 
optimal solution. In addition, our DTORA algorithm performs close to 
the C-Opt algorithm and better than the other algorithms in all scenar-
ios. For example, as shown in Fig.  4(j), the stabilization costs for the 
Cloud, Random, Ly-GA, End, Ly-DPSO, DTORA, and C-Opt algorithms 
are 37.9 ms, 32.0 ms, 31.2 ms, 30.7 ms, 27.5 ms, 23.4 ms, and 22.9 ms, 
respectively. Compared to the Cloud, Random, Ly-GA, End, and Ly-
DPSO algorithms, DTORA reduces the execution cost by 38.2%, 26.9%, 
25.0%, 23.6%, and 14.8%, respectively. Moreover, compared to the 
C-Opt algorithm, DTORA shows only a 2.5% gap in performance.

Additionally, as the task generation probability 𝜌 increases, the cost 
of all algorithms increases, and the convergence rate of most algorithms 
slows down. For example, as shown in Fig.  4(a)(d)(g)(j)(m), the DTORA 
algorithm converges to lower cost values at approximately 500, 650, 
900, 1100, and 1600 time slots for 𝜌 values of 0.3, 0.5, 0.7, 0.9, and 
1, respectively. Furthermore, the higher the resource configuration, the 
lower the execution cost for all algorithms except the End algorithm. 
For example, in Fig.  4(a)(b)(c), the stabilization cost of the Ly-DPSO 
algorithm is about 5 ms, 4.5 ms, and 4 ms, respectively. It is observed 
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Fig. 8. Battery energy levels of EDs.
Fig. 9. Impact of 𝑉  and 𝐸min on average execution cost and battery energy.

that the Edge algorithm is more sensitive to both 𝜌 and resource 
allocation compared to the End and Cloud algorithms. For example, in 
Fig.  4(a)(b)(c), the costs of the Edge and Cloud algorithms under Low, 
Medium, and High resource configurations are approximately 11 ms, 
9 ms, 7 ms and 7 ms, 5.5 ms, 4 ms, respectively. This is because 
ED 𝐷𝑛 executes at most one task under the End strategy in a single 
slot, whereas the Edge and Cloud algorithms need to handle multiple 
tasks. Note that due to the limited resources of the edge servers, the 
cost of the Edge algorithm is too high, and we only display it in Fig. 
4(a)(b)(c)(e)(f)(i).

Fig.  5 shows the impact of task execution reliability constraints on 
the average execution cost. Since the offloading decisions generated 
by the End, Edge, Cloud, and C-Opt algorithms are deterministic and 
cannot be adjusted based on reliability, the analysis focuses solely 
on the DTORA, Ly-DPSO, Ly-GA, and Random algorithms. Among 
these, the DTORA algorithm consistently achieves the lowest cost. For 
example, in Fig.  5(a), the cost of DTORA is visibly lower than the other 
algorithms under the task generation probability of 0.3, 0.5, 0.7, 0.9 
and 1. As shown in Fig.  5(c), at a task generation probability of 0.9, the 
average execution costs for the DTORA, Ly-DPSO, Ly-GA, and Random 
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algorithms are 21.0 ms, 24.1 ms, 25.3 ms, and 29.4 ms, respectively. 
The DTORA algorithm achieves average execution cost reductions of 
12.6%, 16.9%, and 28.4% compared to the Ly-DPSO, Ly-GA, and 
Random algorithms. Furthermore, a higher task generation probability 
𝜌 leads to an increase in the average execution cost for all algorithms. 
For example, in Fig.  5(b), when the reliability constraint is fixed at 
0.90, the cost of the DTORA algorithm is 4.3 ms, 8.5 ms, 14.2 ms, 
20.8 ms, and 25.6 ms as 𝜌 is set to 0.3, 0.5, 0.7, 0.9, and 1, respectively. 
As the reliability constraints become stricter, the average execution 
cost increases for all algorithms. For example, in Fig.  5(a)(b)(c), when 
𝜌 = 1, the average execution costs of the DTORA algorithm are 24.9 ms, 
25.6 ms, and 26.0 ms as the reliability constraints are set to 0.85, 0.90, 
and 0.95, respectively.

Fig.  6 presents the runtime of the DTORA, Ly-DPSO, Ly-GA, and 
C-Opt algorithms in a time slot. Compared to the C-OPT algorithm, the 
runtime of DTORA, Ly-DPSO, and Ly-GA algorithms are much lower. 
As 𝜌 increases, the runtime of all the algorithms increases, and the 
runtime of the DTORA algorithm becomes closer to that of the Ly-
DPSO and Ly-GA algorithms. For example, when 𝜌 = 0.3, the DTORA 
algorithm exhibits a relatively higher overhead compared to the Ly-
GA and Ly-DPSO algorithms, with a noticeable performance gap. As 𝜌
increases, this gap decreases. For example, when 𝜌 = 0.9, the runtime of 
DTORA, Ly-DPSO, and Ly-GA are 0.174 ms, 0.170 ms, and 0.165 ms, 
respectively, and DTORA is only 2.2% and 5.2% slightly higher than 
that of the Ly-DPSO and Ly-GA algorithms, respectively, and accounts 
for merely 8.7% of the entire time slot. As 𝜌 increases, the runtime of 
the C-Opt algorithm becomes increasingly distinct compared to other 
algorithms. For example, when 𝜌 = 0.9, the runtime of C-Opt is approx-
imately 16 times longer than that of the DTORA algorithm, making it 
unsuitable for dynamic systems. Thus, due to the short runtime of the 
algorithm, the energy consumption of DTORA is negligible.

Summary of Figs.  4 and 6: although the runtime of DTORA is 
slightly higher than that of Ly-DPSO and Ly-GA, the cost is obviously 
lower compared to Ly-DPSO and Ly-GA. In contrast, while the C-Opt 
algorithm demonstrates the lowest cost, its runtime is unacceptable. 
However, our DTORA algorithm achieves satisfactory performance in 
terms of both cost and runtime.

5.3.2. The impact of parameters
Fig.  7 presents the execution cost of the DTORA algorithm for 

different values of sub-populations 𝛾 = {2, 3, 4, 5, 6, 7, 8}. It is evident 
that 𝛾 = 3 results in the lowest cost, indicating the best performance of 
DTORA. This is because a larger 𝛾 allows sub-populations to evolve in 
various directions, facilitating the exploration of multiple local optima. 
However, this comes with a trade-off: increasing 𝛾 reduces the number 
of particles per sub-population. Thus, DTORA obtains a higher cost at 
𝛾 = 7, 8.

Fig.  8 illustrates the battery energy of EDs controlled by different 
perturbation parameters 𝜃, when the number of EDs is 30. The dotted 
lines illustrate the upper bound of battery energy for EDs with the 
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Fig. 10. Average execution costs of different algorithms in large-scale systems.

value of 𝜃𝑛+𝐸max
𝐻 . During the initial slots, the EDs utilize the harvested 

energy to charge their batteries, leading to a linear increase in battery 
energy. As shown in Fig.  8(a), after stabilization, ED 𝐷6 achieves a 
higher battery energy. This discrepancy arises from the differences in 
𝜃𝑛 for each ED 𝐷𝑛, resulting in distinct virtual energy queues and 
consequently different stable battery energy. Furthermore, after the 
1000th slot, all EDs stabilize at their respective upper energy bounds. 
Battery energy remains constrained within the range [0, 𝜃𝑛 + 𝐸max

𝐻 ], 
confirming the validity of Theorem  3.

Fig.  9 demonstrates the effects of the control parameter 𝑉  and the 
lower bound on battery output energy 𝐸min on battery energy and 
average execution cost. The parameter settings of 𝑉  and 𝐸min for our 
experimental evaluation are determined following prior studies [15,
20]. The change of the average execution cost is depicted in Fig.  9(a). 
As the value of 𝐸min decreases, the average execution cost increases. 
For 𝑉 = 1.0𝑒 − 4 and 𝐸min = 0.01 mJ, the average execution cost is 
highest during the first 800 time slots. This is because 𝐸min influences 
the minimum CPU frequency for local execution, resulting in slower 
task execution at the initial stage. In later stages, the stabilized average 
execution cost decreases as 𝑉  increases or 𝐸min decreases. For instance, 
when 𝐸min = 0.02 mJ, the stabilized cost is highest for 𝑉 = 0.5𝑒−4 and 
lowest for 𝑉 = 1.6𝑒 − 4. This is due to the combined effect of 𝑉  and 
𝐸min on the penalty term 𝜆 in Eq. (21), encouraging energy-efficient 
task execution over task dropping.

The change of battery energy is shown in Fig.  9(b). The results 
indicate that higher 𝑉  values or lower 𝐸min values lead to higher 
stabilized battery energy. For example, when 𝑉 = 1.0𝑒 − 4 and 𝐸min =
0.01 mJ, the stabilized battery energy is nearly double that of 𝑉 =
1.0𝑒−4 and 𝐸min = 0.02 mJ. Similarly, the battery energy for 𝑉 = 1.0𝑒−4
and 𝐸min = 0.02 mJ is approximately twice that of 𝑉 = 0.5𝑒 − 4
and 𝐸min = 0.02 mJ. It is obvious that the stabilized battery energy 
is directly proportional to 𝑉  and inversely proportional to 𝐸min, as 
validated by Eq. (21). Therefore, by selecting appropriate combinations 
of (𝑉 ,𝐸min), it is possible to adapt the system with various performance 
requirements.

5.3.3. Large-scale system simulations
To evaluate the feasibility of the algorithm in large-scale systems, 

we conduct a set of simulation experiments involving 300 EDs and 50 
edge servers. As shown in Fig.  10, when 𝜌 = 0.5 and the resource 
configuration is Medium, the stabilization costs for the Edge, End, 
Random, Cloud, Ly-GA, Ly-DPSO, DTORA, and C-Opt algorithms are 
217.4 ms, 127.1 ms, 117.4 ms, 113.7 ms, 99.6 ms, 98.8 ms, and 
85.3 ms, respectively. Compared to these algorithms, DTORA reduces 
the execution cost by 60.8%, 33.9%, 27.4%, 25.0%, 14.4%, and 13.7%, 
respectively. Fig.  11 shows the performance of these algorithms on the 
average execution time under varying reliability constraints for task 
execution. It can be seen that our algorithm consistently achieves the 
lowest execution cost compared to other algorithms. The experimental 
results indicate that our DTORA maintains robust performance even in 
14 
Fig. 11. Average execution costs of different algorithms under varying execution 
reliability in large-scale systems.

Fig. 12. Average execution costs under varying numbers of EDs and edge servers in 
large-scale systems.

large-scale systems. Fig.  12 presents the results of average execution 
time under varying numbers of EDs and edge servers, showing that exe-
cution time increases linearly with the number of EDs and edge servers. 
This observation validates the algorithmic complexity and scalability 
analysis discussed in Section 4.6. In our future real-world experiments, 
we can implement Jetson Orin Nano boards featuring a 6-core ARM 
Cortex-A78AE architecture as EH EDs, a Dell P5820 workstation to 
simulate edge servers, and an NVIDIA RTX 3090 to simulate a cloud 
server. Each ED can be equipped with a solar panel, an EH module, 
and a battery. To facilitate energy monitoring in experiments, we can 
integrate Raspberry Pi 4B units with voltage/power monitors to track 
harvested energy.

6. Conclusion and future work

In this paper, we have proposed a new task offloading and resource 
allocation method for EH-EEC computing systems. Our approach has 
addressed the critical challenges of resource constraints, task execution 
reliability, and battery energy stability. We have formulated the task 
offloading problem as a cost optimization problem, considering factors 
such as ED capacity, task reliability, and energy consumption. By 
leveraging Lyapunov optimization, we have provided optimal closed-
form solutions for computation and transmission power allocation. 
Additionally, we have designed the MDPSO algorithm to determine 
the optimal offloading strategy. Extensive experimental results have 
demonstrated the superiority of our method in terms of reducing delay, 
enhancing task execution reliability, and maintaining energy stability 
under dynamic conditions.

In future work, we plan to extend our scheduling framework to 
accommodate more complex edge-cloud systems, particularly those 
with temporally correlated energy harvesting patterns. This involves 
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developing models to capture time-dependent energy arrival and de-
signing robust scheduling policies for such scenarios. Additionally, we 
will also adapt our solution to specific EH models, such as those related 
to solar energy.
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Appendix A. Proof for Theorem  2

Recall that the proposed DTORA algorithm can achieve the mini-
mization of problem P3 in each slot. We use 𝛱 to represent a particular 
solution. According to Eq. (27), the following inequality holds:
𝛥𝑉 (𝑡) =𝛥(𝑡) + 𝑉 ⋅ E

[

𝑐𝑜𝑠𝑡𝑡|�̃�𝑡]

≤𝛷 +
𝑁
∑

𝑛=1
E
[

�̃�𝑡
𝑛
(

𝑒𝑡𝑛 − 𝐸𝑡,∗
𝑛
)

+ 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡,∗𝑛 |�̃�𝑡]

≤𝛷 +
𝑁
∑

𝑛=1
E
[

�̃�𝑡
𝑛
(

𝑒𝑡𝑛 − 𝐸𝑡,𝛱
𝑛

)

+ 𝑉 ⋅ 𝑐𝑜𝑠𝑡𝑡,𝛱𝑛 |�̃�𝑡]

(†)
≤𝛷 + 𝜐

𝑁
∑

𝑛=1
�̃�𝑡

𝑛 + 𝑉 (𝑐𝑜𝑠𝑡opt + 𝜐)

(‡)
≤𝛷 + 𝜐

𝑁
∑

𝑛=1
max

{

𝜃𝑛, 𝐸
max
𝐻

}

+ 𝑉 (𝑐𝑜𝑠𝑡opt + 𝜐).

Inequality (†) holds because our policy 𝛱 operates independently of 
the virtual battery level �̃�𝑡

𝑛. Furthermore, inequality (‡) is derived by 
applying Theorem  1 in conjunction with Lemma  2.

Lemma 2. For ∀𝜐 > 0, there exists a static and randomized strategy 𝛱 , 
applicable to P3, that satisfies the following inequality:
𝑁
∑

𝑖=1
𝐄
[

𝑐𝑜𝑠𝑡𝑡,𝛱𝑛
]

≤ 𝑐𝑜𝑠𝑡opt + 𝜐,

|

|

|

𝐄
[

𝑒𝑡𝑛 − 𝐸𝑡,𝛱
𝑛

]

|

|

|

≤ 𝜐,

where 𝑐𝑜𝑠𝑡opt = lim𝑇→∞
1
𝑇
∑𝑇−1

𝑡=0
∑𝑁

𝑛=1 E
[

𝑐𝑜𝑠𝑡𝑡,opt𝑛

]

 is the theoretically op-
timal cost corresponding to the optimal decision of the system to problem 
P2.

Proof.  This proof can be obtained by Theorem 4.5 in [51], which is 
omitted for brevity. □

When 𝜐 → 0, we have
𝛥𝑉 (𝑡) ≤ 𝛷 + 𝑉 𝑐𝑜𝑠𝑡opt .

Summing over all time slots and taking the average gives
1 E

[

(L (𝑡) − L (𝑡 − 1)) +⋯ + (L (1) − L (0)) |�̃�𝑡]+

𝑇
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𝑉
𝑇

𝑇−1
∑

𝑡=0

𝑁
∑

𝑛=1
E
[

𝑐𝑜𝑠𝑡𝑡,∗𝑛
]

≤ 𝛷 + 𝑉 𝑐𝑜𝑠𝑡opt .

Since L (0) = 0, as 𝑇 → ∞, we can obtain the upper bound of the 
system’s long-term average execution cost:

lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0

𝑁
∑

𝑛=1
E
[

𝑐𝑜𝑠𝑡𝑡,∗𝑛
]

≤ 𝛷
𝑉

+ 𝑐𝑜𝑠𝑡opt .

Then we will get the upper boundary of long-term net harvesting 
energy. Assume there exists 𝜚 > 0 and function 𝛺(𝜚) that satisfies the 
policy 𝛽, then we have
𝑁
∑

𝑖=1
𝐄
[

𝑐𝑜𝑠𝑡𝑡,𝛽𝑛
]

= 𝛺(𝜚),

𝐄
[

𝑒𝑡𝑛 − 𝐸𝑡,𝛱
𝑛

]

≤ −𝜚.

Substituting into Eq. (27), we have

𝛥𝑉 (𝑡) =𝛥(𝑡) + 𝑉 ⋅
𝑁
∑

𝑛=1
E
[
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𝑁
∑

𝑖=1
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Summing over all time slots and taking the average gives
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{
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𝜚
{

𝛷 + 𝑉 (𝑐𝑜𝑠𝑡max − 𝑐𝑜𝑠𝑡opt )
}

.

Since ∑𝑇−1
𝑡=0

∑𝑁
𝑛=1 E

[

�̃�𝑡] ≥
∑𝑇−1

𝑡=0
∑𝑁

𝑛=1 E
[

𝑒𝑡𝑛 − 𝐸𝑡
𝑛
]

, we have the upper 
boundary of long-term net harvesting energy:

lim
𝑇→∞

1
𝑇

𝑇−1
∑

𝑡=0

𝑁
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𝑛=1
E
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≤ 𝛷 + 𝑉 (𝑐𝑜𝑠𝑡max − 𝑐𝑜𝑠𝑡opt ).

Appendix B. Proof for Lemma  1

First prove that 𝐹 (𝑝𝑡𝑛) is monotonically increasing about 𝑝𝑡𝑛. Letting 
𝜒 = ℎ𝑡𝑚𝑛𝑝

𝑡
𝑛𝜎

−2, the function can be deformed as

𝐹1(𝜒) =
𝜎2𝜉𝜒

𝐴𝑡
𝑛 log2(1 + 𝜒)

=
𝜎2𝜉 ln 2
𝐴𝑡
𝑛

⋅
𝜒

ln(1 + 𝜒)
.

Taking the first order derivative of 𝐹1(𝜒), we get

𝐹 ′
1(𝜒) =

𝜎2𝜉 ln 2
𝐴𝑡
𝑛

⋅
(1 + 𝜒) ln(1 + 𝜒) − 𝜒

(1 + 𝜒)
[

ln(1 + 𝜒)
]2

.

When 𝜒 > 0, it is easy to see that the denominator of 𝐹 ′
1(𝜒) is greater 

than zero. Let 𝐹2(𝜒) = (1 + 𝜒) ln(1 + 𝜒) − 𝜒 . Then for the derivative of 
𝐹2(𝜒), we have
𝐹 ′
2(𝜒) = ln(1 + 𝜒).

Since 𝐹2(0) = 0, for 𝜒 > 0, the numerator of 𝐹 ′
1(𝜒) is positive. This 

implies that 𝐹1(𝜒) is monotonically increasing when 𝜒 > 0. Given that 
𝑝𝑡𝑛 > 0, it follows that 𝐹 (𝑝𝑡𝑛) is monotonically increasing with respect to 
𝑝𝑡𝑛. Therefore, the minimum value of 𝐹 (𝑝𝑡𝑛) occurs at 𝑝𝑡𝑛 = 0. Now, we 
focus on solving the limit

lim
𝑝𝑡𝑛→0

𝜉ℎ𝑡𝑚𝑛𝑝
𝑡
𝑛

𝐴𝑡
𝑛 log2 𝜀

,

where 𝜀 = 1+ℎ𝑡𝑚𝑛𝑝
𝑡
𝑛𝜎

−2. Using L’Hospital’s rule [52], the numerator and 
denominator are simultaneously derived for 𝑝𝑡𝑛 to give

lim
𝑝𝑡𝑛→0

𝜉ℎ𝑡𝑚𝑛
𝐴𝑡
𝑛ℎ𝑡𝑚𝑛

𝜎2𝜀 ln 2

= 𝜎2𝜉𝐴𝑡
𝑛
−1 ln 2.

In the end, the range of values of function 𝐹 (𝑝𝑡 ) is 
(

𝜎2𝜉𝐴𝑡 −1 ln 2,+∞
)

𝑛 𝑛
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Data availability

Data will be made available on request.
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