
Dynamic Staleness Control for Asynchronous Federated Learning in
Decentralized Topology

Qianpiao Ma1, Jianchun Liu2, Qingmin Jia1�, Xiaomao Zhou1, Yujiao Hu1, and Renchao Xie1,3

1 Purple Mountain Laboratories, Nanjing, Jiangsu, China
{maqianpiao,jiaqingmin,zhouxiaomao,huyujiao}@pmlabs.com.cn

2 School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
jcliu17@ustc.edu.cn

3 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing, China
Renchao xie@bupt.edu.cn

Abstract. Decentralized federated learning (DFL) has emerged as a promising paradigm for distribut-
ed machine learning over edge nodes (i.e., workers) without relying on a centralized parameter server.
Most existing DFL researches rely on synchronous communication among workers. However, due to
edge heterogeneity and dynamic network conditions, synchronous DFL mechanisms may suffer from
inefficient model training and poor scalability. Meanwhile, the existing asynchronous DFL (ADFL)
mechanisms present the challenge of stale models among workers, leading to diminished training qual-
ity, especially on Non-IID data. In this paper, we propose a novel staleness-aware ADFL (SA-ADFL)
mechanism, aiming to realize a trade-off between model training efficiency and quality by dynamic
staleness control. Specifically, we provide rigorous theoretical proof for SA-ADFL and formulate the
worker scheduling problem to minimize total model training time under flexible long-term staleness
constraints. Then we decompose the original round-coupled problem into a series of single-round sub-
problems by leveraging the Lyapunov optimization, enabling efficient worker selection to minimize
training time in each round while ensuring staleness queue stability. Experimental results demonstrate
that our SA-ADFL accelerates model training by approximately 52.9% while maintaining equivalent
model training accuracy compared with the state-of-the-art mechanisms.
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1 Introduction

With the increasing popularity of Internet of Things (IoT), a massive amount of data are generated from
physical worlds every day [1]. Traditionally, these data are transmitted to a remote cloud for processing,
which will lead to potential privacy leakage and significant delay due to long-distance transmission. To this
end, edge computing is proposed to push more computation capacity to the network edge, enabling efficient
data processing locally. Besides, it motivates the application of federated learning (FL), which implements
distributed machine learning over edge nodes (i.e., workers) [2].

Based on the network topology, FL is generally categorized into two typical schemes. One is central-
ized FL (CFL) [2,3], where a centralized parameter server (PS) governs the model training among workers.
Each worker performs local updates on its own data and uploads its local model to the parameter server. The
parameter server then aggregates the local models into a global model and distributes it back to the workers.
Although CFL is a well-established and widely used scheme, it has some drawbacks. First, the FL archi-
tecture is constrained by a star topology, which limits the scalability of the system. Second, as all workers
have to communicate with the parameter server, it will become a communication bottleneck on suffering
from the enormous amount of traffic workload, leading to the risk of single point failure. To overcome the
limitation in CFL, decentralized federated learning (DFL) [4–9] is proposed, where workers exchange their
local models with their neighbors through peer-to-peer communications. DFL is a promising scheme that
can achieve high scalability, as it does not rely on a centralized parameter server. Moreover, DFL is more
suitable for the emerging scenarios of IoT, where many intelligent and autonomous devices (e.g., vehicles,
robots) are deployed, which naturally form a decentralized network. However, the implementation of highly
efficient DFL on mobile edge networks still faces some unique challenges:

– Edge Heterogeneity: In DFL, each worker needs to communicate with its heterogeneous neighbors
with different locations, data sizes, computation capacities, and network quality [10]. This means that
the coordination of the training process in DFL is more complicated and inefficient than that in CFL.

– Edge Dynamic: Due to the mobility of workers in edge computing, the connections between workers
may be intermittent, creating the change of network topologies over time. Moreover, if a worker is
under a poor communication condition, other workers may lose their connections with this worker.
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– Non-IID Data: The data among workers is often non-independent-and-identically-distributed (Non-
IID) [2] due to local data collection, which can significantly degrade FL performance. This challenge
is more pronounced in DFL, since workers may have less data diversity than the parameter server in
CFL, which can obtain models trained from all workers’ data [11].

DFL can operate under two different communication schemes: synchronous or asynchronous. In the
synchronous DFL (SDFL) scheme, each worker updates its local model on its own data and shares it with
all its neighbors in each round. Then, it waits for the local models from all its neighbors and aggregates
them to update its local model again. However, due to edge heterogeneity, it suffers from inefficient model
training, as all workers have to wait for the slowest or idle ones to finish their local updating and model
transferring, known as the straggler problem. Moreover, it is vulnerable to the edge dynamics of the net-
work, as the connections between workers may be unstable. Therefore, it is obviously impractical to expect
all the neighbors to respond in each round, as some workers may lose their connectivity with others.

Therefore, it is necessary to relax the synchronization restrictions in DFL to cope with the heterogene-
ity and dynamic of edge network. Some researches propose the asynchronous DFL (ADFL) scheme, where
each worker does not wait for the latest local models from all its neighbors to arrive. Instead, it aggre-
gates the local models it has received so far and performs the next round of local updating as soon as it
finishes the previous one. Asynchronous communication scheme is well suited for DFL scenarios because
of the varying computation capacities and intermittent availability of workers. However, ADFL alleviates
the straggler problem in SDFL on the expense of using out-of-date models, inevitably incurring staleness
concern. Specifically, asynchronous communication scheme amplifies the negative effects of Non-IID data
and leads to gradient divergence, as each worker aggregates the stale models from its neighbors, which may
even make the model hard to converge [12].

Motivated by these challenges, we propose a dynamic staleness control mechanism for ADFL, aiming
to strike a balance between model training efficiency and quality. Instead of performing local updating
immediately after the last round as the existing ADFL researches, we control the local updating process
for each worker to limit the staleness degree of the system. This allows us to exploit the advantages of
asynchronous communication scheme to accelerate model training, while avoiding the drawbacks of low
model quality caused by high-stale local models.

The main contributions of this paper are as follows:

– We formally describe the asynchronous federated learning in decentralized topology and analyze its
convergence through rigorous theoretical proof. To achieve the dynacmic staleness control mechanism
in ADFL, we formulate the worker scheduling problem with the objective of minimizing the total model
training time under flexible long-term staleness constraints.

– We transform the original round-coupled problem into a series of single-round sub-problems by lever-
aging the Lyapunov optimization. Based on this, we determine the worker to perform updating in each
round without compromising the staleness queue stability in the long run.

– Experimental results on the classical models and datasets show that, by deploying our mechanism, the
model training can be greatly accelerated by about 52.9% while achieving the same accuracy compared
with the state-of-the-art solutions.

2 Related Works

2.1 Communication Schemes of Decentralized Federated Learning

The communication schemes of DFL determine the behavior of the workers for performing local training
and transferring models, which can be categorized into two schemes: synchronous and asynchronous.

Synchronous communication schemes are adopted by most of the existing DFL researches. For exam-
ple, BrainTorrent [4] uses a fully connected topology for DFL, where each worker shares its local model
with all other workers in each round. GossipFL [5] creates a sparse topology, where each worker only shares
its local model with its neighbors in each round, saving bandwidth costs. MATCHA [6] applies matching
decomposition to divide the original network topology into separate subgraphs and communicates over dif-
ferent subgraphs in different rounds. L2PL [7] develops a learning-driven method to dynamically build an
optimal partially connected topology in each training round. FedHP [8] adaptively controls local updating
frequency and network topology to support the heterogeneous workers. D-Cliques [9] introduces a novel
topology that lowers gradient bias by grouping workers in connected cliques. These synchronous commu-
nication schemes have a common limitation: they require each worker to wait for the completion of each
round, known as the synchronization point, before the next round of model updating. This leads to slow
convergence, as the system depends on the efficiency of the slowest worker.

There are a few of works adopt asynchronous communication schemes for DFL, where workers can send
and receive models without any synchronization point or coordination with other participants. For example,
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Table 1: Key Notations.

Symbol Semantics

V The set of workers {v1, v2, ..., vN}
Vi The set of neighbor workers of vi including itself
Di/D The data size on worker vi/all workers
αi The proportion of the data size of worker vi to the total data size
σij The proportion of the data size of neighbor worker vj to the total data size of workers in Vi
Fi/F The local loss function of vi/global loss function
wi(t) The local model of worker vi at round t

wi
j(t)

The local model from worker vj in worker vi’s
cache at round t

ŵi(t) The aggregated local model of worker vi at round t
τ ij(t) The staleness of model wi

j(t)

xi(t) The indicator for whether worker vi is determined to perform local updating at round t.

HADFL [13] proposes a framework that supports decentralized asynchronous training on heterogeneous
workers. AsyNG [11] dynamically selects neighbors for each worker to balance the communication cost
and model performance in ADFL. EF-HC [14] introduces an event-triggered communication framework
for ADFL to restrict aggregations to only when new models are available. However, these asynchronous
communication schemes do not have fine-grained control over staleness, which leads to high-stale models
that produce excessive inconsistent updates and large biases from the current gradient direction.

2.2 Deal with Staleness in Asynchronous Federated Learning

As mentioned before, staleness is a major concern that affects the performance of asynchronous communi-
cation schemes in FL. Many researches have focused on mitigating the adverse effect of staleness in CFL
scenarios. For example, FedAsync [15] assigns smaller aggregation weights to stale models to lessen their
impact on training. SAFA [16] proposes a simple approach to handle staleness, where the parameter server
discards too stale models during the training process. ASO-Fed [17] deploys dynamic learning rates for
workers according to the frequency of their participating in global updating, which can also alleviate the
staleness concern. The authors in [18] and [19] propose technological means to compensate for delayed
gradients based on approximate Taylor expansion. FedSA [12] introduces a semi-asynchronous FL mecha-
nism, which ensures the models not to be too stale by involving multiple workers in global updating in each
round.

However, the above methods are all applicable to asynchronous CFL (ACFL) scenarios, and there is few
research on effective staleness control in ADFL. In fact, staleness control in ADFL is more challenging and
complicated than in ACFL, due to the more complex and dynamic network topology then the star topology
in ACFL. In this paper, we fully consider the unique challenges faced by ADFL, and propose an effective
dynamic staleness control method to improve model training performance.

3 Asynchronous Decentralized Federated Learning

3.1 Federated Learning (FL)

We perform federated learning over a set of workers V = {v1, v2, ..., vN}. Each worker vi trains a model
on its local dataset Di, with the size of Di , |Di|. Then the loss function of worker vi is defined as

Fi(w) ,
1

Di

∑
D∈Di

L(w;D), (1)

where w is the parameter vector and L(·) is the loss function, e.g., cross-entropy, focal or hinge loss.
The global dataset over all workers is D, with size D =

∑
vi∈V Di. Let αi = Di/D denote the

proportion of worker vi’s data size to the total data size. Then the global loss function is defined as

F (w) ,
∑
vi∈V

Di

D
Fi(w) =

∑
vi∈V

αifi(w). (2)

The objective is to find the optimal parameter vector w∗ so as to minimizeF (w), i.e., w∗ = argminw F (w).
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Algorithm 1 Asynchronous Decentralized Federated Learning (ADFL)
1: for t = 1 to T do
2: Processing at Each Worker vi:
3: Logging Thread:
4: while true do
5: if Receive local model wi

j(t) from worker vj then
6: Add wi

j(t) to its cache
7: Calculate staleness τ ij(t)
8: Calculate vi’s total staleness Ω̂i(t) =

∑
vj∈Vi τ

i
j(t)

9: Send REPORT message containing Ω̂i to the coordinator
10: Updating Thread:
11: if Receive EXECUTE message then
12: Obtain wi

j(t) of each worker vj ∈ Vi from caches
13: Aggregation local models to obain ŵi(t) by Eq. (4)
14: Obtain local model wi(t+ 1) by Eq. (5)
15: Send wi(t+ 1) to the neighbouring workers
16: Send READY message to the coordinator
17: Processing at the Coordinator:
18: Logging Thread:
19: while true do
20: if Receive REPORT message from worker vi then
21: Update Ωi(t) = Ω̂i(t)
22: if Receive READY message from worker vi then
23: V̂ = V̂ ∪ {vi}
24: Scheduling Thread:
25: Determine vi to perform local updating from V̂
26: Send EXECUTE message to vi
27: V̂ = V̂ − {vi}
28: Ωi(t+ 1) = 0
29: for each vj ∈ V̂ do
30: Ωj(t+ 1) = Ωj(t) + |Vj |

3.2 Asynchronous Decentralized Federated Learning Architecture

We introduce the asynchronous decentralized federated learning (ADFL) architecture as described in Alg.
1. In addition to a set of workers, the ADFL architecture includes a coordinator that schedules the local
updating of workers for staleness control.

Each worker has a logging thread and an updating thread. Let wi(t) denote the local model of worker
vi at round t. The logging thread (Lines 3-9) caches the local models sent by its neighbors, and reports its
staleness to the coordinator. Note that if a worker receives multiple local models from the same neighbor
before aggregating them, it only caches the latest one. Let wi

j(t) denote the local model from worker vj
in worker vi’s cache at round t. Note that since the workers perform model updating asynchronously, the
received model wi

j(t) in vi’s cache is not necessarily equal to the local model wj(t) of vj at round t [18].
Let τ ij(t) be the interval (called the staleness [15]) between the current round t, and the received model
version from worker vj at worker vi’s cache. The received model actually satisfies

wi
j(t) = wj(t− τ ij(t)) (3)

The logging thread of vi also calculate its total staleness of received worker as Ω̂i(t) =
∑
vj∈Vi τ

i
j(t), and

then sends REPORT message containing Ω̂i to the coordinator. Let Vi denote the set of neighbor workers
of vi including itself. xi(t) is a boolean variable denoting whether worker vi is determined to perform local
updating at round t. Upon receiving an EXECUTE message from the coordinator at round t, i.e., xi(t) = 1,
the updating thread (Lines 10-16) of worker vi aggregates the cached local models by

ŵi(t) =

∑
vj∈Vi Djw

i
j(t)∑

vj∈Vi Dj
=
∑
vj∈Vi

σijw
i
j(t), xi(t) = 1, (4)

where σij = Dj/
∑
vj∈Vi Dj denote the proportion of the data size of worker vj to the total data size of

workers in Vi. After the model aggregation, worker vi performs local updating at round t by

wi(t+ 1) = ŵi(t)− η∇Fi(ŵi(t); ξi(t)), (5)
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where η is the learning rate, ∇ is the gradient operator, ξi(t) is a sample uniformly chosen from the local
data on worker vi at round t. Then worker vi sends its local model wi(t + 1) to the neighboring workers
and sends the READY message to the coordinator.

The coordinator has a logging thread and a scheduling thread. The logging thread (Lines 18-23) records
the currently idle worker set V̂ and all workers’ staleness in real time by the READY and REPORT mes-
sages. The scheduling thread (Lines 24-30) selects a worker from V̂ for the next local updating (see Section
5 for detail). If worker vi is determined, the coordinator sends a EXECUTE message to vi and remove vi
from set V̂ . Accordingly, the total stalenessΩi(t+1) of vi in the next round t+1 is set to 0, and that of each
other worker vj in V̂ is increased by the number of their models in caches (i.e., Ωj(t+ 1) = Ωj(t) + |Vj |).

Note that the coordinator only exchanges messages (i.e., REPORT, READY, and EXECUTE) containing
minimal data with workers, which is an essential difference from the parameter server in CFL. As a result,
we disregard its transmission time, which is negligible when compared to the model training and model
transfer times. Moreover, in the event that a worker loses its connection with the coordinator due to dynamic
network conditions, the coordinator excludes this worker from scheduling, ensuring that the overall training
process of the system continues.

4 Convergence Analysis

4.1 Assumptions

We make the following widely used assumptions on the loss functions Fi(w),∀vi ∈ V [20] [21].

Assumption 1 Fi(w) isL-smooth, i.e., ∀w1,w2,Fi(w2)−Fi(w1) ≤ 〈∇Fi(w1),w2−w1〉+L
2 ‖w2 −w1‖2.

Assumption 2 Fi(w) is µ-strongly convex, i.e., ∀w1,w2, Fi(w2) − Fi(w1) ≥ 〈∇Fi(w1),w2 − w1〉 +
µ
2 ‖w2 −w1‖2.

4.2 Analysis of Convergence Bounds

Convergence of a Single Round of Local updating We first give the following lemma to describe the
convergence of a single round of local updating. For ease of expression, we abbreviate F (w∗) as F ∗, which
represents the optimal value of the global loss function F . Similarly, F ∗i (w

∗
i ) is abbreviated as F ∗i , which

denotes the optimal value of the loss function Fi on worker vi.

Lemma 1. Taking η < µ
2L2 , by the local updating of Eq. (5), it holds that

E[F (wi(t+ 1))]− F ∗ ≤ ρ(E[F (ŵi(t))]− F ∗) + δi,

where ρ = 1− µη, and δi = η
2 ξi + Lη2g∗i .

Proof. According to Assumption 1, it is obvious that F is L-smooth. Combining with Eq. (5), it follows

F (wi(t+ 1))− F ∗ ≤ F (ŵi(t))− F ∗ + 〈∇F (ŵi(t)),wi(t+ 1)− ŵi(t)〉+
L

2
‖wi(t+ 1)− ŵi(t)‖2

=F (wi(t+ 1))− F ∗ − η〈∇F (ŵi(t)),∇Fi(ŵi(t); ξi(t))〉+
Lη2

2
‖∇Fi(ŵi(t); ξi(t))‖2. (6)

We derive the expectation of the third term of Eq. (6) as

E[〈∇F (ŵi(t)),∇Fi(ŵi(t); ξi(t))〉] = 〈∇F (ŵi(t)),∇Fi(ŵi(t))〉

=
1

2

(
‖∇F (ŵi(t))‖2 + ‖∇Fi(ŵi(t))‖2 − ‖∇F (ŵi(t))−∇Fi(ŵi(t))‖2

)
≥1

2

(
‖∇F (ŵi(t))‖2 + ‖∇Fi(ŵi(t))‖2 − ξ2i

)
, (7)

where ξi , max ‖∇F (w) − ∇Fi(w)‖ is the maximum of the gradient divergences for ∀w according
to [20]. By Assumption 2, it is obvious that F is µ-strongly convex. It follows

‖∇F (ŵi(t))‖2 ≥ 2µ(F (ŵi(t))− F ∗). (8)

By using the AM-GM Inequality, we derive the expectation of the last term of Eq. (6) as

E[‖∇Fi(ŵi(t); ξi(t))‖2] =E[‖∇Fi(ŵi(t); ξi(t))−∇Fi(w∗i ; ξi(t)) +∇Fi(w∗i ; ξi(t))‖2]
≤2E[‖∇Fi(ŵi(t); ξi(t))−∇Fi(w∗i ; ξi(t))‖2] + 2E[‖∇Fi(w∗i ; ξi(t))‖2], (9)
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where w∗i is the optimal solution of Fi. According to Lemma 3 of [22], we have

E[‖∇Fi(ŵi(t); ξi(t))−∇Fi(w∗i ; ξi(t))‖2] ≤ 2L(Fi(ŵi(t))− F ∗i ). (10)

Since Fi is µ-strongly convex for each ∀vi ∈ V , we have

Fi(ŵi(t))− F ∗i ≤
1

2µ
‖∇Fi(ŵi(t))‖2. (11)

By taking Eqs. (10) and (11) into Eq. (9), we have

E[‖∇Fi(ŵi(t); ξi(t))‖2] ≤
2L

µ
‖∇Fi(ŵi(t))‖2 + 2g∗i . (12)

where g∗i , E[‖∇Fi(w∗i ; ξi(t))‖2] according to [22]. By taking Eqs. (7), (8) and (12) into Eq. (6), we have

E[F (wi(t+ 1))]− F ∗ ≤ (1− µη)(E[F (ŵi(t))]− F ∗)− (
η

2
− L2η2

µ
)‖∇Fi(ŵi(t))‖2 +

η

2
ξ2i + Lη2g∗i .

(13)

Since η < µ
2L2 , we have

E[F (wi(t+ 1))]− F ∗ ≤ ρ(E[F (ŵi(t))]− F ∗) + δi, (14)

where ρ = 1− µη and δi = η
2 ξ

2
i + Lη2g∗i .

A key Lemma for Analysis For ease of expression, we construct three sequences of matrices X(t), Yj(t)
and Z(t) for t ≥ 1, where X(t) and Yj(t) are N × N diagonal matrices, and Z(t) is a M -dimensional
vector. Specifically, the i(t)-th diagonal element of X(t) is x(t), and others are 1; the i(t)-th diagonal
element of Yj(t) is yj(t), and others are 0; the i(t)-th element of Z(t) is z(t), and others are 0. Note
that x(t), yj(t) and z(t) are are on the same row in X(t), Yj(t) and Z(t), respectively, satisfying θ(t) =
x(t) +

∑
vj∈Vi yj(t) ≤ 1. We first state a key lemma for our statement. Note that if xi(t) = 1, we can

drop the index i in τ ij(t), i.e., rewrite as τj(t), since the worker vi that performs the update in round t is
determined. Let ωj(t) = t− τj(t)− 1 ≥ 0, τmax = maxt,j{τj(t)} and θmax = maxt{θ(t)}.

Lemma 2. Let Q(t) be a sequence of matrices for t ≥ 0. If Q(t) ≤ X(t)Q(t−1)+
∑
vj∈Vi Yj(t)Q(ωj(t))+

Z(t), where xi(t) = 1, then we have

Q(T ) ≤
T∏
t=0

P(t)Q(0) +

T∑
t=0

∆(t),

where P(t) is a M ×M diagonal matrix and its i(t)-th diagonal element is θmax
1

1+τmax , and others are
1. That is,

P(t) =



1 0 · · · · · · 0
...

. . .
...

0 θmax
1

1+τmax 0
...

. . .
...

0 0 · · · · · · 1

 ,

∆(r) is a M -dimensional vector

∆(t) =


[0, 0, ..., 0]>, t = 0

(X(t) +
∑

vj∈Vi
Y(t)−E)

t−1∑
r=0

∆(r) + Z(t), t ≥ 1.

Proof. Since θmax < 0, θmax−
τmax

1+τmax > 1. It follows that

x(t) +
∑
vj∈Vi

yj(t)θmax
− τmax

1+τmax ≤(x(t) +
∑
vj∈Vi

yj(t))θmax
− τmax

1+τmax

≤θmax · θmax−
τmax

1+τmax = θmax
1

1+τmax (15)
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By using Eq. (15), we can derive the following relation:

X(t) +
∑
vj∈Vi

Yj(t)

t−1∏
r=t−τj(t)

[P(r)]−1

≤



1 0 · · · · · · 0
...

. . .
...

0 x(t) +
∑
vj∈Vi yj(t)θmax

− τmax
1+τmax 0

...
. . .

...
0 0 · · · · · · 1

 ≤


1 0 · · · · · · 0
...

. . .
...

0 θmax
1

1+τmax 0
...

. . .
...

0 0 · · · · · · 1

 = P(t) (16)

It is obvious that Lemma 2 is true when t = 0. We assume that the induction hypothesis holds for all t from
0 to T − 1, i.e.,

Q(t) ≤
t∏

r=0

P(r)Q(0) +

t∑
r=0

∆(r), ∀t ∈ {0, 1, ...T − 1}. (17)

When t = T , we derive that

Q(T ) ≤ X(T )Q(T − 1) +
∑
vj∈Vi

Yj(T )Q(ωj(T )) + Z(T )

≤X(T )

[T−1∏
t=0

P(t)Q(0) +

T−1∑
t=0

∆(t)

]
+
∑
vj∈Vi

Yj(T )

[ωj(T )∏
t=0

P(t)Q(0) +

ωj(T )∑
t=0

∆(t)

]
+ Z(T )

=

[
X(T ) +

∑
vj∈Vi

Yj(T )

T−1∏
t=T−τj(T )

[P(t)]−1
] T−1∏
t=0

P(t)Q(0)

+

[
X(T )

T−1∑
t=0

∆(t) +
∑
vj∈Vi

Yj(T )

ωj(T )∑
t=0

∆(t)

]
+ Z(T )

≤P(T )

T−1∏
t=0

P(t)Q(0) +

[
X(T ) +

∑
vj∈Vi

Yj(T )

] T−1∑
t=0

∆(t) + Z(T ) =

T∏
t=0

P(t)Q(0) +

T∑
t=0

∆(t). (18)

Thus, we complete the induction and prove the correctness of Lemma 2.

Convergence Bound of SA-ADFL Combining with Lemma 1 and Lemma 2, we analyze the convergence
bound of SA-ADFL as the following theorem. For ease of expression, we denote A = [α1, ...αN ] as the
data size weight vector of all workers, and denote

S =

σ
1
1 · · · σN1
...

. . .
...

σ1
N · · · σNN

 (19)

as the data size weight matrix of the neighboring workers. Since no global model is maintained in the
decentralized topology, we consider the weighted wT =

∑
vi∈V αiw

i
T of all local models.

Theorem 1. w0 is the initial model on each worker. After inter-cluster aggregation Eq. (4) is performed T
times, the weighted model wT satisfies

E[F (wT )]− F ∗ ≤ κ(F (w0)− F ∗) + δ,

where κ =
∑
vi∈V αiρ

ψiT

1+τmax , ρ = 1 − µη, δ = A � LS∆, L = [1−ρ
ψ1T

1−ρ , 1−ρ
ψ2T

1−ρ , ..., 1−ρ
ψNT

1−ρ ] and
∆ = [δ1, δ2, ...δN ]>. � is the Hadamard product symbol.

Proof. Since F is convex and σij ∈ (0, 1), combining with Eq. (3), for ∀vi ∈ V , it holds that

F (ŵi(t))− F ∗ ≤
∑
vj∈Vi

σijF (ŵi(t))− F ∗ =
∑
vj∈Vi

σij(F (w
i
j(t))− F ∗)

=
∑
vj∈Vi

σij(F (wj(t− τ ij(t)))− F ∗). (20)
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According to Lemma 1, we derive that

E[F (ŵi(t))]− F ∗ ≤ ρ
∑
vj∈Vi

σij(E[F (ŵj(t− τ ij(t)− 1))]− F ∗) +
∑
vj∈Vi

σijδj . (21)

Let Qi(t) = F (ŵi(t)) − F ∗ and Q(t) = [Q1(t), ..., QM (t)]>. The recursive relation for ∀vi ∈ V is
transformed into

Q(t) ≤ X(t)Q(t− 1) +
∑
vj∈Vi

Yj(t)Q(ωj(t)) + Z(t), (22)

where

X(t) =


1 0 · · · · · · 0
...

. . .
...

0 ρσii 0
...

. . .
...

0 0 · · · · · · 1

 ,Yj(t) =



0 0 · · · · · · 0
...

. . .
...

0 ρσij 0
...

. . .
...

0 0 · · · · · · 0.

 ,

and Z(t) = [0, 0, ...
∑
vj∈Vi σ

i
jδj , ..., 0]

>. According to Lemma 2,

Q(T ) ≤
T∏
t=0

P(t)Q(0) +

T∑
t=0

∆(t), (23)

where P(t) is aM×M diagonal matrix. Specifically, the i(t)-th diagonal element of P(t) is (ρ
∑
vj∈Vi σ

j
i )

1
1+τmax =

ρ
1

1+τmax , and others are 1. ∆(t) satisfies the following recursive relation:

∆(t) =



[0, 0, ..., 0]>, t = 0

0 0 · · · · · · 0
...

. . .
...

0 ρ 0
...

. . .
...

0 0 · · · · · · 0


t−1∑
r=0

∆(r) +



0
...∑

vj∈Vi
σijδj

...
0


, t ≥ 1.

(24)

From Eq. (24), we can derive that

A

T∑
t=0

∆(t) =[α1, ..., αN ]


1−ρψ1T

1−ρ
∑
vj∈V1 σ

1
j δj

1−ρψ2T

1−ρ
∑
vj∈V2 σ

2
j δj

...
1−ρψNT

1−ρ
∑
vj∈VM σNj δj

 =
∑
vi∈V

αi
1− ρψiT

1− ρ
∑
vj∈Vi

σijδj = A� LS∆,

(25)

L = [ 1−ρ
ψ1T

1−ρ , 1−ρ
ψ2T

1−ρ , ..., 1−ρ
ψNT

1−ρ ] and ∆ = [δ1, δ2, ...δN ]>. Therefore, we have

E[F (wT )]− F ∗ ≤
∑
vi∈V

αi(E[F (ŵi(T ))]− F ∗) =
∑
vi∈V

αiQi(T ) = AQ(T )

≤A

T∏
t=0

P(t)1M (F (w0)− F ∗) + A

T∑
t=0

∆(t) =
∑
vi∈V

αiρ
ψiT

1+τmax (F (w0)− F ∗) + A� LS∆. (26)

Setting κ =
∑
vi∈V αiρ

ψiT

1+τmax and δ = A� LS∆, we complete the proof.

5 Staleness-aware ADFL (SA-ADFL)

5.1 Problem Formulation

In each round, the coordinator selects a worker in temp set V̂ to execute the local updating. Recall that xi(t)
is the selection indicator for worker vi at round t, where xi(t) = 1 signifies vi is selected and xi(t) = 0
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otherwise. The arrival time of worker vi’s READY message at round t is represented by Ri(t). The training
time of a single round on vi is given byAi = aiDi, where ai is the completion time needed by vi to train one
data sample. We denote the completion time of round t as H(t). Since each worker performs local updating
asynchronously, H(t) satisfies the following recurrence relation: H(t+1) = max{Ri(t) +Ai−H(t), 0}.
Let x = {xi(t)|vi ∈ V, t ∈ [1, T ]} denote the worker scheduling strategy in the whole training process, the
problem is formulated as follows:

(P1) : min
x

1

T

T−1∑
t=0

E[H(t)] (27a)

s.t.
1

T

T−1∑
t=0

E[Ωi(t)] ≤ Ω, vi ∈ V (27b)

Ωi(t) ≤ Ωmax, vi ∈ V, t ∈ [1, T ] (27c)∑
vi∈V

xi(t) = 1, t ∈ [1, T ] (27d)

xi(t) ∈ {0, 1}, ∀vi ∈ V, t ∈ [1, T ]. (27e)

Constraint (27c) is the long-term staleness constraint for each worker. Constraint (27d) requires that all
workers’ staleness do not exceed an upper limit Ωmax at each round. Constraint (27e) represents that a
worker is selected to perform local updating at each round. The objective is to determine strategy x so as to
minimize the total training time while adhering to both long-term and individual staleness constraints.

5.2 Lyapunov Optimization Framework

To enable online scheduling without any future information while satisfying the total staleness constraints
of workers, we construct a virtual queueQi(t) for each worker vi to indicate the gap between the cumulative
staleness till round t and the given budget Ω, evolved as

Qi(t+ 1) = max{Qi(t) +Ωi(t)−Ω, 0}. (28)

To characterize the stability of the training procedure, we first define the Lyapunov function as L(Θ(t)) =
1
2

∑N
i=1Qi(t)

2, whereΘ(t) = {Qi(t)}vi∈V contains the backlogs of all the virtual queues. To keep the vir-
tual queues stable (i.e., to enforce the staleness constraints) by persistently pushing the Lyapunov function
towards a lower value, we introduce one-round Lyapunov drift as

∆L(Θ(t)) , E[L(Θ(t+ 1))− L(Θ(t))|Θ(t)] =
1

2

N∑
i=1

E[Qi(t+ 1)2 −Qi(t)2|Θ(t)]

=
1

2

N∑
i=1

E[(Qi(t) +Ωi(t)−Ω)2 −Qi(t)2|Θ(t)] =

N∑
i=1

E[(Ωi(t)−Ω)|Θ(t)]Qi(t) +
1

2

N∑
i=1

(Ωi(t)−Ω)2.

(29)

Through employing Lyapunov optimization theory, our objective is to minimize a supremum bound on the
following drift-plus-penalty expression in each training round:

∆L(Θ(t)) + V E[H(t)|Θ(t)] ≤ V E[H(t)|Θ(t)] +

N∑
i=1

E[(Ωi(t)−Ω)|Θ(t)]Qi(t) + Γ , (30)

where Γ = 1
2

∑N
i=1(Ωmax−Ω)2 is a constant, and the parameter V ≥ 0 controls the time-staleness deficit

tradeoff, i.e., how much we shall emphasize the training time minimization compared to the staleness deficit.
Then the original round-coupling optimization problem P1 can be further decomposed into the follow-

ing step-by-step online scheduling problem:

(P2) : min
xi(t),∀vi∈V

N∑
i=1

(Ωi(t)−Ω)Qi(t) + V H(t) (31a)

s.t. Ωi(t) ≤ Ωmax, vi ∈ V (31b)∑
vi∈V

xi(t) = 1, (31c)

xi(t) ∈ {0, 1}, ∀vi ∈ V . (31d)

We can solve P2 to obtain a worker from V̂ to perform local updating at each round t (Line 25 in Alg. 1).
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5.3 Performance Analysis
Theorem 2. Following the strategy obtained by Alg. 1, the long-term system training time satisfies:

T−1∑
t=0

E[H(t)] < H∗ +
TΓ

V

where H∗ =
∑T−1
t=0 H∗(t) is the minimum training completion time obtained by the optimal strategy to P1.

Proof. From Theorem 4.5 in [23], for an arbitrary δ > 0, there exists a stationary and randomized strategy
for P2, which decides independent of the current queue backlogs, such that the inequalities

∑T−1
t=0 E[H(t)] ≤

H∗ + δ and E[Ωi(t)−Ω] ≤ δ are satisfied. From Eq. (30), we have

∆L(Θ(t)) + V E[H∗(t)|Θ(t)] ≤V E[H(t)|Θ(t)] +

N∑
i=1

E[(Ωi(t)−Ω)|Θ(t)]Qi(t) + Γ (32)

Summing the inequality over t ∈ {0, 1, ..., T − 1}, we have:

E[L(Θ(t))− L(Θ(0))] + V

T−1∑
t=0

E[H∗(t)] ≤ V (H∗ + δ) + δT

N∑
i=1

Qi(t) + TΓ (33)

By letting δ go to zero and considering the fact that L(Θ(t)) ≥ 0 and L(Θ(0)) = 0, we derive that
T−1∑
t=0

E[H(t)] < H∗ +
TΓ

V
(34)

Theorem 2 shows that the strategy obtained by Alg. 1 achieves O( 1
V )-near of the optimal strategies without

compromising the staleness queue stability in the long run.

6 Performance Evaluation

6.1 System Setup
Environment We implement a large-scale decentralized federated learning system using PySyft [24], a
Python library for privacy-preserving deep learning under the PyTorch framework. PySyft allows the vir-
tual worker creation for FL training, where each worker simulates an individual machine and trains a local
model on its own dataset. We simulate a typical edge computing system with 100 workers randomly de-
ployed in a 100m×100m region. The mobility patterns of edge nodes are modeled similar to [25] and the
communication environment is setting according to [21].

Models and Datasets We train classical CNN [26] models on two datasets (MNIST [27] and CIFAR-
10 [28]). MNIST consists of 60,000 handwritten digits for training and 10,000 for testing, while CIFAR-10
includes 50,000 images for training and 10,000 for testing, and both of them have ten different types of
objects. The CNN network architecture consists of two 5×5 convolution layers (20, 50 channels for MNIST
and 32, 64 channels for CIFAR-10), each of which is followed by 2×2 max pooling, two fully-connected
layers (800, 500 units for MNIST and 1600, 512 units for CIFAR-10), and a softmax layer with 10 units. The
model sizes are 1.64MB (CNN on MNIST) and 3.35MB (CNN on CIFAR-10), respectively. Similar to the
existing works [12], we implement the Non-IID data among workers by label skewed partition. Specifically,
the data in MNIST (or CIFAR-10) labeled as ‘0’ are distributed to workers v1-v10, the data labeled as ‘1’
are distributed to workers v11-v20,..., and the data labeled as ‘9’ are distributed to workers v91-v100.

Benchmarks To demonstrate the advantages of asynchronous decentralized federated learning mechanism
with staleness control, we compare our SA-ADFL mechanism with two typical DFL benchmarks. 1) FedHP
[8]: A typical synchronous decentralized federated learning mechanism. 2) HADFL [13]: A asynchronous
decentralized federated learning mechanism without staleness control.

6.2 Evaluation Results
The Impact of Staleness Constraint Fig. 1 illustrates the impact of staleness constraint Ω on accura-
cy after 5000s of training. The range of Ω spans from 500 to 5000. And we set the maximum staleness
Ωmax = 3Ω empirically. Our observations reveal that accuracy declines when staleness is either too small
or too large. Specifically, when staleness is too small, local updates on workers become limited, resulting
in idle computation resources. Conversely, excessive staleness leads to stale models causing high gradien-
t divergence and reduced model accuracy. For instance, in the left plot of Fig. 1, during MNIST training,
accuracy peaked at 91.2% whenΩ = 2000. Consequently, we adoptΩ = 2000 for subsequent experiments.
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The Impact of Control Parameter Fig. 2 illustrates the impact of the control parameter V on accuracy
after 5000s of training. Notably, a larger value of V prioritizes training time, while a smaller value em-
phasizes staleness control. We observe that when V = 1000, the model achieves its highest accuracy. For
instance, in the right plot of Fig. 2, when training on the CIFAR-10, the accuracy reaches a maximum of
49.2% at V = 1000. Consequently, we select V = 1000 for subsequent experiments.

Performance Comparison We compare our SA-ADFL with two other typical DFL mechanisms: HADFL
and FedHP. As shown in Figs. 3 and 4, the loss and accuracy curves of HADFL exhibit more pronounced
jitter compared to those of SA-ADFL and FedHP due to its asynchronous communication among workers
without staleness control. In contrast, the curves of FedHP remain stable due to its adoption of synchronous
communication among all workers. Our SA-ADFL strikes a balance between fully synchronous and asyn-
chronous communication by staleness control, resulting in superior DFL performance. For example, in Fig.
3, after 5000s of training, SA-ADFL achieves a stable training accuracy of 91.2%, outperforming HADFL
(83.4%) and FedHP (76.2%). Furthermore, the training time required to reach 75% accuracy is 1735s for
SA-ADFL, 3680s for HADFL, and 4878s for FedHP. SA-ADFL reduces training time by approximately
52.9% and 64.4% while achieving the same accuracy compared with HADFL and FedHP, respectively.

7 Conclusion

In this paper, we have proposed a novel staleness-aware asynchronous decentralized federated learning (SA-
ADFL) mechanism to balance the model training efficiency and quality in edge computing. We have rigor-
ously proved the convergence of SA-ADFL and formulated a worker scheduling problem to minimize total
model training time given flexible long-term staleness constraints. By leveraging Lyapunov optimization,
we have transferred the original round-coupled problem into single-round sub-problems, ensuring efficient
worker selection and staleness queue stability. Our experimental results have demonstrated the superiority
of SA-ADFL compared with the state-of-the-art solutions.
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