
2450 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 2024

Distributed Strategy for Collaborative Traffic
Measurement in a Multi-Controller SDN

Da Yao , Qianpiao Ma , Haibo Wang , Min Chen , Graduate Student Member, IEEE,
and Hongli Xu , Member, IEEE

Abstract—Traffic measurement provides fundamental flow
statistics for a wide range of network applications. In traditional
networks, since switches work independently, a flow may be mea-
sured by multiple switches along its route path, which is a waste
of network resource. Software defined networking (SDN) is a new
paradigm that decouples control plane and data plane. The con-
trol plane is implemented in a centralized controller to manage
all switches with a global view. Many works focus on designing
efficient centralized strategy to coordinate the switches for traffic
measurement, called collaborative traffic measurement. However,
with the continuous growth of the network topology and traffic
volume, the controller may be the bottleneck. To improve the
capability and enhance the robustness of control plane, multiple
controllers is employed to manage a subset of switches, respectively.
Unfortunately, control plane with multiple distributed controllers
cannot execute the centralized measurement strategy. In this paper,
we propose a novel distributed iterative strategy for collaborative
traffic measurement in a multi-controller SDN. We also theoreti-
cally prove that our proposed algorithm will converge to the global
optimal by iterations. The extensive simulations demonstrate that
the proposed strategy achieves a near-optimal performance (gap
about 10%) in terms of measurement load at switches and dras-
tically reduces the communication load by 20% at least among
controllers compared with the state-of-the-art algorithms.

Index Terms—Collaborative traffic measurement, multiple
controllers, software defined networks.

I. INTRODUCTION

TRAFFIC measurement collects fundamental flow statistics
in the data plane, which is the basis for the control plane

to manage the network and well serve a number of applications,
including load balance [1], [2], [3], flow rerouting [4], [5],
fairness [6], instruction detection [7], [8], anomaly detection [9],

Manuscript received 15 December 2022; revised 13 March 2023; accepted 24
April 2023. Date of publication 27 April 2023; date of current version 30 April
2024. This work was supported in part by the National Science Foundation
of China (NSFC) under Grants 62102392 and 62132019. Recommended for
acceptance by Dr. Haipeng Dai. (Corresponding authors: Hongli Xu; Qianpiao
Ma.)

Da Yao, Min Chen, and Hongli Xu are with the School of Computer
Science and Technology, University of Science and Technology of China, Hefei
230027, China, and also with Suzhou Institute for Advanced Study, University of
Science and Technology of China, Suzhou 215123, China (e-mail: yddzf@mail.
ustc.edu.cn; mchen330@mail.ustc.edu.cn; xuhongli@ustc.edu.cn).

Qianpiao Ma is with the Purple Mountain Laboratories, Research Cen-
ter for Future Networks, Nanjing 211111, China (e-mail: maqianpiao@
pmlabs.com.cn).

Haibo Wang is with the Department of Computer Science, University of
Kentucky, Lexington, KY 40506 USA (e-mail: wanghaibo.pro@gmail.com).

Digital Object Identifier 10.1109/TNSE.2023.3271123

[10], [11], traffic engineering [12], performance diagnostics [13]
and policy enforcement [14].

In traditional networks, as each switch (or router) has its
own data plane and control plane, it usually performs traffic
measurement independently, called independent traffic measure-
ment. For instance, each switch may mirror a portion p of the
packet stream that passes through it (e.g., NetFlow). As another
example, each switch may record all the incoming packets
and perform approximate measurement using the compact data
structures called sketches [15], [16], [17]. However, since each
packet may traverse multiple switches along its route path, the
packet may be recorded by multiple or all switches, leading to
redundant traffic measurement. Because of the redundancy, the
portion of new traffic statistics collected by a switch is actually
less thanp (for NetFlow), resulting in memory/computation inef-
ficiency. For sketch-based traffic measurement, the redundancy
allows the packets recorded elsewhere to be recorded in the local
sketch, resulting in computation inefficiency and degrading the
estimation accuracy.

To avoid measurement redundancy, we need to perform col-
laborative traffic measurement, where one switch will not repeat
measuring flows that are measured by other switches along their
route paths and in the meanwhile one switch must measure the
flows if there no other optional switches. This kind of collabora-
tion can hardly be supported by traditional non-SDN networks
but can be realized in Software-Defined Networks (SDN). SDN
decouples the control plane from switches. The control plane
is centralized in a single controller with a network-wide view,
which manages all the switches in the SDN. It can design an effi-
cient measurement strategy to coordinate all the switches and to
avoid redundancy. Note that this paper focuses on measurement
strategies rather than measurement techniques.

There are some works [18], [19], [20] proposing efficient
strategies for collaborative traffic measurement. cSamp [18]
assumes that the centralized controller can gather traffic infor-
mation and route information for each origin-destination (OD)
pair. Specifically, the controller is input the number of flows
and route path for each OD pair. By solving a linear program
with the objective of the minimizing the maximum measurement
load on any switch, the controller derives sampling probability
of any flow at any switch along its routing path. The sampling
probability will be sent to the switch for sampling process of
each incoming packet in that flow. For any switch, it needs a
table of size O(n2) to maintain the sampling probabilities for all
flows passing through it, wheren is the number of ingress/egress

2327-4697 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: China Jiliang University. Downloaded on June 06,2024 at 07:58:33 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2733-4102
https://orcid.org/0000-0001-8684-3495
https://orcid.org/0000-0003-4809-4897
https://orcid.org/0000-0002-4346-9269
https://orcid.org/0000-0003-3831-4577
mailto:yddzf@mail.penalty -@M ustc.edu.cn
mailto:yddzf@mail.penalty -@M ustc.edu.cn
mailto:mchen330@mail.ustc.edu.cn
mailto:xuhongli@ustc.edu.cn
mailto:maqianpiao@penalty -@M pmlabs.com.cn
mailto:maqianpiao@penalty -@M pmlabs.com.cn
mailto:wanghaibo.pro@gmail.com

YAO et al.: DISTRIBUTED STRATEGY FOR COLLABORATIVE TRAFFIC MEASUREMENT IN A MULTI-CONTROLLER SDN 2451

switches. Instead of maintaining a table, DCM [19] employs two
Bloom filters, with the first one encoding the set of flows to be
measured and the second one helping remove false positives
from the first filter. The Bloom filters at each switch are main-
tained and updated by the centralized controller to adapt to traffic
dynamics. The recent work proposed by Xu et al. [20] decreases
the table size at each switch from O(n2) to O(1) by assigning
each switch a constant sampling probability which applies to all
flows passing through it.

Prior works all rely on a centralized strategy that is executed
on a single controller for collaborative traffic measurement.
As the continuous growth of network topology, traffic and
application requirements [21], [22], a number of literatures,
including HyperFlow [23], Onix [24] and ONOS [25], advo-
cate the control plane of multiple controllers, each exclusively
managing a subset of switches in the network. This kind of
control plane achieves high reliability and scalability, and is the
scenario that this paper focuses on. Unfortunately, all the above
solutions to collaborative traffic measurement cannot be applied
to the multi-controller scenario directly, because the switches
are partitioned into several domains and each controller manages
one of these domains. One may argue to let one of the controllers
be the “super” controller which aggregates the information from
all controllers and executes the centralized strategy. However,
this faces three challenges as follow.
� Controller bottleneck: Comparing the “super” controller

with an imaginary single controller that governs the whole
network, both controllers need the same amount of input
information and need to solve the algorithm with the same
complexity. It is apparent that the “super” controller will
become the bottleneck—it is because a single controller
cannot manage the whole network that we employ a num-
ber of controllers.

� Control message delay: Before executing the centralized
algorithm, the “super” controller should gather all input
information (traffic and route information of all flows)
from peer controllers through the control link. This will
compete for the bandwidth of control link with some
fundamental functions including state synchronization and
link discovery, leading to that the controller must either
wait for control packets with the non-negligible delay or
act with incomplete information.

� Single point of failure: If a controller fails or gets dis-
connected from the system, the performance of the entire
network’s collaborative traffic measurement will go down
and applications relying on it will be affected.

To address the above challenges, we propose an effective
distributed strategy for the collaborative traffic measurement
problem. To the best of our knowledge, this is the first paper on
collaborative traffic measurement in multi-controller scenarios.
Each controller only needs the traffic and route information
of flows that pass through the local domain and communicate
with its neighbouring controller(s) by exchanging a little
information. After multiple rounds of communication between
neighboring controllers, the solution provably converges to the
final solution. The solution includes the sampling probability of
any flow at any switch, providing a fine-grained collaborative
traffic measurement. We also give the dedicate design in the

Fig. 1. Motivation Example of Collaborative Traffic Measurement. Plot (a):
Uniform Sampling with Probability 1/3; Plot (b): Uniform Sampling with
Probability 2/3; Plot (c): Collaborative Sampling with Probability 1/3. Flow
symbols that are placed under/over a switch icon mean that those flows are
measured by the switch.

data plane to support the collaborative traffic measurement
function in multi-controller scenarios. We compare our solution
to baselines that are modified from the existing centralized
strategies [18], [19], [20] and demonstrate that it incurs lowest
and near-optimal measurement load to cover all flows, which
makes our new solution more practical in real-world systems.
We also evaluate our solution under other important metrics to
demonstrate its practicability.

The main contributions of this paper are:
� We formulate the collaborative traffic measurement

problem and propose a distributed traffic measurement
probability assignment (DMPS) algorithm for the control
plane, in which each controller assigns measurement
fractions for switches based on its local and neighboring
information rather than the whole network. We also
theoretically prove that the proposed algorithm will
converge to the global optimal.

� We design a dedicated packet processing mechanism in
data plane to support the collaborative traffic measurement
function in multi-controller scenarios.

� The extensive simulations demonstrate that the propose
DMPS achieves a near-optimal performance (gap about
10%) in terms of measurement load at switches and
significantly reduces the communication load by 20% at
least among controllers compared with the best existing
algorithms.

The rest of this paper is organized as follows. The motivating
example is given to show the advantage of collaborative traffic
measurement over independent traffic measurement in Sec-
tion II. The system model and the problem statement is presented
in Section III. The sampling probability assignment problem
in the control plane is formulated and the proposed distributed
algorithm is given, both in Section IV, which also includes the
analysis of the proposed algorithm. Data plane packet processing
that supports the collaborative traffic measurement function is
described in Section V. We give the evaluation in Section VI
to demonstrate its efficiency. Finally, we conclude the paper in
Section VII.

II. MOTIVATING EXAMPLE

We give an example, depicted in Fig. 1, to demonstrate
the advantage of the collaborative traffic measurement over

Authorized licensed use limited to: China Jiliang University. Downloaded on June 06,2024 at 07:58:33 UTC from IEEE Xplore. Restrictions apply.

2452 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 2024

TABLE I
PROBABILITY DISTRIBUTION ALONG WITH THE NUMBER OF MEASURED

FLOWS FOR INDEPENDENT TRAFFIC MEASUREMENT UNDER DIFFERENT

SAMPLING PROBABILITIES p

independent traffic measurement. Assume that there are three
flows f1, f2, f3 all with the identical route path of switches
V1 → V2 → V3. In order to alleviate the impact of the traffic
measurement on some important functions, e.g., packet forward-
ing, the traffic measurement load on the switch (evaluated by the
number of measured flows) should be low.

Consider the case for independent sampling where the sam-
pling probability is low, i.e., 1/3. We calculate the probability
that a given number of flows are measured among all switches,
presented in Table I. The event that all flows are measured
happens with the probability of only 18% and it is mostly
likely that two flows are measured (with the probability of
53%), which is depicted in plot (a) of Fig. 1 as an example.
Plot (a) shows that flow f1 is measured twice on switches V1

and V3. This redundant measurement can hardly be avoided
as switches perform independent sampling. To measure more
flows, a trivial method is to improve the sampling probability,
(e.g., 2/3). From the third column of Table I, the event that
three flows are measured among all switches happens with a
high probability (e.g., 0.82). We depict plot (b) of Fig. 1 as an
example, which shows that the measured flows on switch V1 are
f1, f2, those on switches V2 and V3 are f1, f2 and f2, f3. All
flows f1, f2, f3 are measured and the traffic measurement load
of each switch is 2. However, we find that flow f1 is measured
twice by switches V1 and V2, and flow f2 is measured by all
three switches, resulting in measurement redundancy.

Collaborative traffic measurement in the example achieves the
ideal results that every flow is measured and the measurement
load on each switch is 1, depicted in plot (c) of Fig. 1 as an
example. The sampling probability for any flow on any switch
is 1/3. By coordinating three switches V1, V2, V3 along the
route path of any flow, the collaborative traffic measurement
guarantees that 1) any flow is sampled with the probability
of 3× 1

3 = 1, and 2) any flow must not be sampled multiple
times. These two conditions are satisfied by some techniques for
collaborative traffic measurement. In a single-controller SDN,
for each switch in the route path of f , instead of assigning a
value representing the sampling probability, what the controller
actually assigns is a range. Specifically, as shown in Fig. 2, the
controller splits the range [0, 1) into three smaller, disjoint ranges
[0, 1

3), [
1
3 ,

2
3), [

2
3 , 1). When f ’ packets comes at any switch, we

will perform a uniform hash H(f) ∈ [0, 1). Apparently, H(f)
locates in one and only one of the three ranges and f is sampled
by that switch. For the case where there are multiple controllers
in the control plane, the above techniques are not applicable. The
reason is that a flow passes through multiple switches that may

Fig. 2. Motivation Example Comparison about Sampling Probability
Assignment.

Fig. 3. Motivation Example Comparison about Sampling Probability Assign-
ment with multiple controllers.

belong to different domains while the controller only manages
local switches, depicted in Fig. 3. There are four controllers in
the control plane and four switches are managed by the cor-
responding controller. The ideal sampling probability for flow
f on all switches is 1/4. However, since each controller (e.g.,
C1) only has the traffic information on the corresponding switch
(e.g., V1), it is impossible to give the ideal sampling probability
for flow f . Therefore, the range [0, 1) also cannot be split into
smaller, disjoint ranges appropriately. As this paper focuses on
a multi-controller scenario, the challenge of collaborative traffic
measurement that the sampling probability calculation in the
control plane and the sampling probability distribution in the
data plane will be addressed in Section IV and Section V.

III. SYSTEM MODEL AND PROBLEM STATEMENT

This section first introduces the system model and then gives
the problem statement. Some important notations are listed in
Table II.

A. System Model

A classical software-defined network logically consists of
a data plane and a control plane. The data plane consists of
a set of switches, denoted as V = {v1, v2, . . ., vn}, n = |V |,
which is responsible for packet forwarding and other data-
plane functions, e.g., traffic measurement. The control plane is
responsible for managing the entire network, including route
selection/update and making rules for collaborative traffic
measurement. Since we consider the multi-controller scenario,

Authorized licensed use limited to: China Jiliang University. Downloaded on June 06,2024 at 07:58:33 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: DISTRIBUTED STRATEGY FOR COLLABORATIVE TRAFFIC MEASUREMENT IN A MULTI-CONTROLLER SDN 2453

TABLE II
NOTATION SUMMARY

the set ofm controllers in denoted asC = {c1, c2, . . ., cm},m =
|C|. The set of switches managed by each controller ck is
called a domain, which is denoted as Vk, 1 ≤ k ≤ m, with
nk = |Vk|. Due to high synchronization cost and possible state
inconsistence issue, we assume each switch is managed by one
and only one controller, i.e., Vi

⋂
Vj = ∅, ∀i, j ∈ [1,m], i �= j.

Each controller can communicate directly with its neighbour
controller(s) with east-west interfaces [26], [27], [28]. Moreover,
we denote the set of controller ck and its neighbour(s) as Ĉk, and
the set of switches managed by the controllers in Ĉk is denoted
as V̂k.

The traffic of the network is modeled as network flows, which
are identified by one or multiple fields carried in the packet
header, depending on the application needs. A typical flow
identifier is a 5-tuple information containing source address,
source port, protocol, destination address, and destination port.
The set of the route paths for flows in the network is denoted as
P = {p1, p2, . . .ps}with s = |P |. Each route path of flows in the
network consists of a sequence of switches in the network, which
is denoted as pj . We assume that each controller has a knowledge
of the global route path of the flows that appears in the local
domain. This assumption can be supported by exchanging a little
information from peer controllers. Sometimes, if the routing
policy is simple or straight forward, the controller can derive
the route path of the flow in the whole network itself. From the
route paths of each flow, we know the number of flows on route
path pj , denoted as φj . The variable wi,j ∈ [0, 1] denotes the
sampling probability of flows on switch vi traveling through its
route path pj . Let [pj] be the set of switches on path pj . The
measurement load li of switch vi is defined as the number of
measured flows on it.

B. Problem Statement

The problem studied in this paper is called flow distribution
problem. Specifically, for any flow appearing in the local domain
of each controller ck ∈ C, i.e., pj

⋂
Vk �= ∅, the controller

needs to decide whether the flow is measured by one of the
switches in its local domain (the flow may traverse multiple
domains and thus may not be necessarily measured locally). If
the flow is measured in its local domain, the controller should
decide on which switch the flow is measured. The constraint
is that any flow must be measured by one (for the purpose of
improving measurement performance) and only one switch (for
the purpose of reducing the total overhead) in the whole multi-
controller SDN. The objective is to balance the measurement
load among all switches.

The flow distribution problem will be solved by the measure-
ment strategy design in the control plane and the dedicate packet
processing in the data plane, which are given in Section IV and
Section V.

IV. PROBLEM FORMULATION FOR SAMPLING PROBABILITY

ASSIGNMENT ON CONTROL PLANE

The sampling probability assignment problem studies how
the controller assigns the appropriate traffic measurement prob-
abilities for each flow to the switches along its route path, in
order to make the traffic measurement load balanced among
all switches in the entire network. That is, each flow is mea-
sured by one and only one switch such that the measurement
load among switches is balanced. The measurement load of
switch vi is defined as the number of measured flows on it,
denoted as li. The traffic measurement load on switch vi can be
calculated by

li =
∑
pj∈P

wi,jφj (1)

Based on the traffic measurement load on switch vi, the fairness
index I [29], indicating the measurement load balance among
all switches, can be expressed as

I =
(
∑

vi∈V li)
2

n ·
∑

vi∈V l2i
(2)

The measurement load balance is optimally achieved when
li = li′ , ∀vi �= vi′ . In this case, the fairness index I = 1. The
load balanced is degraded if I decreases. The worst case is that
all flows are measured at one switch and the rest of switches are
idle, i.e., li′ = 0, ∀vi′ �= vi and li �= 0, resulting in I = 1

n . To
balance the measurement load among all switches, we expect to
maximize the value of fairness index I . Therefore, we formu-
late our distributed traffic measurement probability assignment
(DMPS) problem as follows:

(P1) : max I (3a)

s.t
∑
vi∈pj

wi,j = 1, ∀pj ∈ P (3b)

0 ≤ wi,j ≤ 1, ∀vi ∈ V, pj ∈ P (3c)

The first (3b) ensures that each flow in the network will be
measured by one switch along the route path pj . The objective
of DMPS is to balance the traffic measurement loads among all
switches, i.e., maximize the fairness index of all switches in the
entire network, max I .

Authorized licensed use limited to: China Jiliang University. Downloaded on June 06,2024 at 07:58:33 UTC from IEEE Xplore. Restrictions apply.

2454 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 2024

The main challenge to derive the optimal solution of P1 is
the incompleteness of traffic information for a controller in a
multi-controller scenario. It is difficult for a single controller to
assign the appropriate traffic measurement probability for flows
on switch vi along its route path pj , because it only has the traffic
information on the switches in its local management area. In this
paper, we propose a distributed traffic measurement probability
assignment (DMPS) algorithm in multi-controller scenario to
balance the traffic measurement loads among all switches.

A. Algorithm Description

The algorithm runs in a distributed manner, and without loss
of generality we consider an arbitrary controller ck. We consider
a time series of 0, 1, . . ., t. . .. Let w

(t)
i,j denote the sampling

probability of flows on switch vi along path pj at iteration t.

Initially, w(0)
i,j is set as 1

|pj | , where |pj | is the number of switches
in routing path pj (this information is known for any controller
as we have assumed that control plane knows routing path of
each flow). The algorithm mainly consists of the following four
steps at iteration t.

Step 1: Controller ck collects w
(t)
i,j for all switches vi ∈ V̂k

and all flows that appears in Ĉk (Lines 3-4). In practice, this can
be done through controllers’ communication, e.g., the west-east
protocol [26], [27], [28].

Step 2: Based on the collected sampling probabilityw(t)
i,j for all

switches in V̂k, the controller ck will solve problem P2 to obtain
the wk,(t+1)

i,j , which is called selfish measurement fraction for ck
and is a temporary constant (Line 5). The problem P2, denoted
as the neighbor optimization stage, is presented in Section IV-B.

Step 3: ck will send w
k,(t+1)
i,j to its neighbor controller(s) that

vi belongs to (Lines 6–7).
Step 4: after receivingwk′,(t+1)

i,j from each neighbor controller

ck′ , ck will compute w
(t+1)
i,j (Lines 8–11).

After all controllers receive the new sampling probabilities
ŵ

k,(t+1)
i,j , the last strategy for sampling probability update, ex-

pressed by (5), will be applied to obtain the sampling probabili-
tiesw(t+1)

i,j (Line 9–11). The above four steps repeat until t ≤ T ,
where T is an integer constant. The setting of T should make the
objective of P1 converges to close-optimum one. The value of T
is usually pre-given and we will experimentally show that T is
usually less than 5. The DMPS algorithm is formally described
in Algorithm 1.

B. Neighbor Optimization Stage

Since one controller can only manage the switches in its
management area in the multi-controller scenario, the traffic
measurement load balance cannot be achieved based on its local
traffic information. Therefore, the idea of neighbor optimiza-
tion is proposed to simply exchange the traffic measurement
loads among all switches managed by controllers in Ĉk, which
finally makes the traffic measurement loads balanced among
all switches in the entire network. The convergence proof of
this method will be presented in Section IV-C. The detailed

Algorithm 1: DMPS Algorithm at Controller ck.

Input: Controller Set Ĉk, Route Path Set P
Output: Final Traffic Sampling Probabilities w(t+1)

i,j

1: t = 0
2: while t < T do
3: for each switch vi ∈ Vk′ , pj ∈ P do
4: Obtain traffic sampling probability w

(t)
i,j

5: end for
6: Solve P2 to obtain ŵ

k,(t+1)
i,j , ∀vi ∈ V̂k, pj ∈ P

7: for each controller ck′ ∈ Ĉk do
8: Send ŵ

k,(t+1)
i,j , ∀vi ∈ V̂k, pj ∈ P

9: end for
10: Receive ŵ

k′,(t+1)
i,j , ∀vi ∈ V̂k, pj ∈ P from ck′ ∈ Ĉk

11: for each switch vi ∈ Vk, pj ∈ P do
12: Calculate w

(t+1)
i,j by (5)

13: end for
14: t = t+ 1
15: end while

description about the neighbour optimization stage is presented
below.

Based on (2), the expression
(
∑

vi∈V li)
2

n in the fairness index
I is a constant, because

∑
vi∈V li is the total number of flows

which is fixed. Therefore, we can obtain the maximum fairness
index I as long as the value of the expression

∑
vi∈V li

2 is
minimized. Therefore, during the neighbour optimization stage,
we can set the objective function as min

∑
vi∈V̂k

li
2. That is, the

problem P2 is formulated as follow:

(P2) : min
∑
vi∈V̂k

(l̂
(t+1)
i)2 (4a)

s.t.
∑
vi∈V̂k

ŵ
k,(t+1)
i,j =

∑
vi∈V̂k

w
(t)
i,j , ∀pj ∈ P (4b)

0 ≤ ŵ
k,(t+1)
i,j ≤ 1, ∀vi ∈ V̂k, pj ∈ P (4c)

The first (4b) ensures that for each flow the sum of the the
sampling probability on switches managed by controllers in
Ĉk along the route path remains unchanged. The objective of
problem P2 is to balance the traffic measurement loads among
all switches managed by controllers in Ĉk.

Note that, controller ck obtains the traffic measurement prob-
abilities w

(t)
i,j on switches managed by controllers in Ĉk at the

iteration t. However, controller ck can only know the traffic
measurement probabilities on switches managed by controllers
in Ĉk at each iteration. Therefore, it is assumed that all the traffic
measurement probabilities on switches should be updated at the
same iteration. Moreover, ŵk,(t+1)

i,j is the traffic measurement

probabilities on switches managed by controllers in Ĉk at it-
eration t+ 1, which is computed by controller ck. Obviously,
each controller tends to reduce the traffic measurement loads
on switches managed by itself, and we called ŵ

k,(t+1)
i,j as a

selfish traffic measurement probabilities. Therefore, there is no
guarantee that the traffic measurement loads among all switches

Authorized licensed use limited to: China Jiliang University. Downloaded on June 06,2024 at 07:58:33 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: DISTRIBUTED STRATEGY FOR COLLABORATIVE TRAFFIC MEASUREMENT IN A MULTI-CONTROLLER SDN 2455

will be balanced, when all controllers execute the selfish strategy
for switches managed by themselves. In order to achieve the
goal of traffic measurement load balanced among all switches,
the step size β is applied during the adjustment of the traffic
measurement probabilities on switches managed by controllers
in Ĉk. That is, the traffic measurement probabilities w(t+1)

i,j on
switch vi at iteration t+ 1 is expressed as

w
(t+1)
i,j = w

(t)
i,j + β ·

∑
ck∈Ĉi

(
ŵ

k,(t+1)
i,j − w

(t)
i,j

)
(5)

C. Convergence Analysis

In this section, we prove that the proposed algorithm con-
verges to the approximate optimal solution of problem P1. For
convenience, we convert P1 to minimize the inverse of the
fairness index I(w), which is denoted as J(w). Therefore, we
can obtain

J(w) =
1

I(w)
=

n
∑

vi∈V (li)
2

(
∑

vi∈V li)2
, (6)

where w = {wi,j‖∀vi ∈ V, pj ∈ P} is the traffic measurement
probability assignment strategy in the network. Besides, we
denote the traffic measurement probability assignment strategy
at iteration t as w(t). Therefore,

J(w(t)) =
n
∑

vi∈V (l
(t)
i)2

(
∑

vi∈V l
(t)
i)2

=
n

Φ2

∑
vi∈V

(l
(t)
i)2, (7)

where Φ =
∑

vi∈V l
(t)
i and l

(t)
i =

∑
γj∈Γ w

(t)
i,jφj .

According to the definition of w(t), we can obtain the new
traffic measurement probabilities assignment strategy w(t+1)

at iteration t+ 1 after the execution of the DMPS algorithm.
Therefore, the transformation model of the traffic measurement
probability assignment strategy w can be expressed as

w(t+1) = T (w(t)) (8)

Based on the above analysis, if w∗ = T (w∗), the traffic mea-
surement probabilities assignment strategy w∗ can be treated as
a fixed point of iterative convergence of (8).

Lemma 1: If w(t) �= w∗, w(t+1) gives a descent direction at
w(t) for J(w(t)), i.e.,

〈∇J(w(t)),w(t+1) −w(t)〉 < 0,

where symbol ∇ denotes the gradient operator, and 〈a, b〉
denotes the inner product of vectors a and b.

Proof: According to (7), we compute the partial derivative of
J(w(t)) with respect to w

(t)
i,j as

∂J(w(t))

∂w
(t)
i,j

=
2n

Φ2
l
(t)
i φj (9)

Therefore, we can obtain

〈∇J(w(t)),w(t+1) −w(t)〉

=
2n

Φ2

∑
w

(t)
i,j∈w(t)

l
(t)
i φj

(
w

(t+1)
i,j − w

(t)
i,j

)

=
2n

Φ2

∑
vi∈V

l
(t)
i

∑
γj∈Γ

φj

(
w

(t+1)
i,j − w

(t)
i,j

)

=
2nβ

Φ2

∑
vi∈V

l
(t)
i

∑
γj∈Γ

φj

∑
ck∈Ĉi

(
ŵ

k,(t+1)
i,j − w

(t)
i,j

)

=
2nβ

Φ2

∑
vi∈V

∑
ck∈Ĉi

l
(t)
i

∑
pj∈P

φj

(
ŵ

k,(t+1)
i,j − w

(t)
i,j

)

=
2nβ

Φ2

∑
vi∈V

∑
ck∈Ĉi

l
(t)
i

(
l̂
k,(t+1)
i − l

(t)
i

)

=
2nβ

Φ2

∑
ck∈C

∑
vi∈V̂k

l
(t)
i

(
l̂
k,(t+1)
i − l

(t)
i

)

=
2nβ

Φ2

∑
ck∈C

⎛⎝ ∑
vi∈V̂k

l
(t)
i · l̂k,(t+1)

i −
∑
vi∈V̂k

(l
(t)
i)2

⎞⎠ (10)

According to (4a), we can obtain the inequality as follow∑
vi∈V̂k

(
l̂
(t+1)
i

)2

≤
∑
vi∈V̂k

(
l
(t)
i

)2

(11)

Therefore, we can deduce that

∑
vi∈V̂k

l
(t)
i · l̂k,(t+1)

i ≤ 1

2

⎡⎣ ∑
vi∈V̂k

(l
(t)
i)2 +

∑
vi∈V̂k

(
l̂
k,(t+1)
i

)2

⎤⎦
≤

∑
vi∈V̂k

(
l
(t)
i

)2

(12)

On one hand, by (9), we can obtain that the function J(w(t))
is strictly convex. That is, as long as w(t) �= w∗, we can obtain
〈∇J(w(t)),w(t+1) −w(t)〉 < 0.

On the other hand, combining (10) and (12), if∑
vi∈V̂k

(l̂
(t+1)
i)2 =

∑
vi∈V̂k

(l
(t)
i)2 for all controllers ck,

the gradient function 〈∇J(w(t)),w(t+1) −w(t)〉 = 0. That is,
when the gradient function 〈∇J(w(t)),w(t+1) −w(t)〉 = 0,
we can obtain that w(t+1) = w(t), and w(t) = w∗.

According to the above conclusion, we can conclude that the
gradient function 〈∇J(w(t)),w(t+1) −w(t)〉 < 0. �

Lemma 2: If w(t) �= w∗, there exists β ∈ (0, 1] such that
J(w(t+1)) < J(w(t)).

Proof: According to (5), we can regard w(t+1) as a variable
vector that varies with the value of parameter β, denoted as
w(t+1)(β). Therefore, w(t) becomes a constant vector with
the parameter β = 0, which means the traffic measurement
probabilities assignment strategy is same as that at any iteration
t, i.e., w(t+1)(0) = w(t).

By the definition of J(w(t)) in (7), J(w(t+1)) is differ-
entiable for each component of w(t+1). Since (5) is a linear
transformation, the components of w(t+1) can be differentiable

Authorized licensed use limited to: China Jiliang University. Downloaded on June 06,2024 at 07:58:33 UTC from IEEE Xplore. Restrictions apply.

2456 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 2024

on the parameter β. Thus, we can deduce that J(w(t+1)) is
differentiable on the parameter β, too.

To simplify the expression, we define G(β) = J(w(t+1)(β))
as a function of the parameter β. Therefore, we can obtain that
G(0) = J(w(t+1)(0)) = J(w(t)).

Assume that∀β ∈ (0, 1], the expressionG(β) ≥ G(0) always
exists, i.e., J(w(t+1)) ≥ J(w(t)).

On one hand, by chain rule, we can obtain that

G′
β =

∑
wi,j∈w(t+1)

∂J

∂w
(t+1)
i,j

·
∂w

(t+1)
i,j

∂β

= 〈∇J(w(t+1)), (w(t+1))′β〉

By Lemma 1, for ∀β → 0+, we can obtain that

G′(0+) = G′
β |β→0+

= lim
β→0+

〈
∇J(w̃(t+1)),

w̃(t+1)(β)− w̃(t+1)(0)

β

〉

= lim
β→0+

〈
∇J(w(t)), w̃(t+1) −w(t)

〉
β

< 0 (13)

On the other hand, we can obtain that

G′(0+) = lim
β→0+

G(β)−G(0)

β − 0
≥ 0 (14)

Based on the above two cases, we can find that the (13) and
(14) are contradictory. As a result, the assumption that G(β) ≥
G(0) always exists with ∀β ∈ (0, 1] does not hold. That is, there
exists β ∈ (0, 1] such that J(w(t+1)) < J(w(t)) �.

Theorem 1: Suppose that the parameter β ∈ (0, 1] makes
J(w(t+1)) < J(w(t)). Then, w(t) can converge to w∗, i.e.,
limt→+∞ w(t) = w∗. In addition, w∗ is the optimal solution
of problem P1.

Proof: According to Lemma 2, J(w(t)) is a monotoni-
cally decreasing sequence with respect to the iteration t and
J(w(t)) > 0. Assume that limt→+∞ w(t) = w′ and w′ �= w∗.

According to Lemma 2, if w′ �= w∗, there exists β ∈ (0, 1]
such that J(w′) decreases again. Therefore, we can obtain that
limt→+∞ w(t) = w∗.

In addition, assume that there exists w′′ such that T (w′′) �=
w′′, and w′′ is the vector with the minimum value of J(w).

According to Lemmas 1 and 2, T (w′′) gives a descent di-
rection at w′′, and there exists the parameter β ∈ (0, 1] such
that J(T (w′′)) < J(w′′), which contradicts our assumption.
Therefore, w∗ is the optimal solution of problem P1. �

V. PACKET PROCESSING ON DATA PLANE

In the multi-controller SDNs, for flows appearing in the local
domain of controller ck, the controller will assign a sampling
probability wi,j to switch vi along its route path pj . How to
obtain wi,j in the control plane has been given in Section IV.
However, since the controller can only manage the switches
in its local domain, there is no guarantee that each flow can

Fig. 4. Illustration of Real-time Packet Processing for Flow Distribution.

be measured once on a switch along its route path. To realize
flow distribution in the local domain, there need some extra
lightweight operations in the data plane of switches to adapt the
sampling probability wi,j for flows on each switch to traditional
packet processing. In other words, two constraints should be
satisfied:
� Flows traversing through route path pj should be measured

one and only once by any switch vi along the route path,
i.e.,

∑
vi∈pj

wi,j = 1;
� The operation of sampling probability update for flows

traversing through route path pj on switch vi should be
lightweight.

We maintain a state bit in each packet header, denoted as
Flag = 0, which indicates whether this packet has been mea-
sured (Flag = 1) or not (Flag = 0). Besides, we maintain
another field in each packet header of flows, denoted as HWj

which represents the cumulative sampling probabilities from
the ingress switches to the current switches (included) along
the route path pj . Initially, HWj = 0 and Flag = 0. Note that
every switch uses the hash valueω ∈ [0, 1) obtained by the same
uniform hash function H(·) that takes the flow identifier as the
arguments, guaranteeing consistently the same hash value at any
switch as long as the the packets belong to the same flow. Our
design ensures that a flow will be measured on the switch where
both Flag = 0 and ω ≥ HWj , if the value of ω is less than the
value of updated HWj . Then, Flag is updated to 1. In a word,
upon a packet of flow arriving at switch vi in its route path pj ,
there are two cases:
� If Flag = 0, it means the flow has not been measured and

we know ω ≥ HWj . Then, we update HWj to HWj +
wi,j . There are two sub-cases.

– If ω < HWj , we will measure the packet and update Flag
as 1.

– Otherwise, the packet will be forwarded directly.
� If Flag = 1, it means the packet has been measured and

there is no need to measure this packet. Therefore, the
packet will be forwarded directly.

The design for the real-time packet processing for flows on
switch vi is illustrated in Fig. 4. Note that it will not significantly
increase the overhead by adding some state information to the
packet header, which has been widely used in various applica-
tions, such as middle box routing [30] and segment routing [31].

VI. EVALUATION

In this section, we first introduce the benchmarks and metrics
for our simulations in Section VI-A. Then we describe the

Authorized licensed use limited to: China Jiliang University. Downloaded on June 06,2024 at 07:58:33 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: DISTRIBUTED STRATEGY FOR COLLABORATIVE TRAFFIC MEASUREMENT IN A MULTI-CONTROLLER SDN 2457

simulation settings in Section VI-B. Finally, we evaluate our pro-
posed algorithms through extensive simulations in Section VI-C.

A. Benchmarks and Performance Metrics

Since DMPS is the first studying the collaborative traffic
measurement in a multi-controller SDN, there is no prior work
for comparison. The most related works, i.e., cSamp [18] and
NSPA [20], are centralized algorithms that are designed for col-
laborative traffic measurement in a single-controller SDN. We
apply them to the multi-controller scenario by assuming that they
are executed at one of the controllers with global information.
This assumption can hardly be true in practical large-scale SDNs
as one controller is limited in computing/memory resources.
However, it makes us know the optimal performance in some
metrics, from which we know the gap between the optimum and
DMPS. We adopt the following performance metrics.
� The maximum measurement load among all switches. The

measurement load on a switch is defined as the number
of flows measured by the switch. The lower the maximum
traffic measurement load among all switches is, the more
balanced the measurement loads among all switches are.

� The fairness index I . After measurement probabilities of
each flow along its route path are obtained, the number
of flows measured by each switch can be determined. We

calculate the fairness index, i.e., I =
(
∑

vi∈V li)
2

n·
∑

vi∈V l2i
, which

indicates what extent the measurement loads among all
switches are balanced.

� The maximum communication load among all controllers.
When a centralized algorithm (e.g., cSamp, NSPA) is ap-
plied in a multi-controller scenario, the “super” controller
should 1) be input the information of all flows from other
controllers. For each flow, the communication load is the
size of the flow identifier, which is 20 Bytes for each
5-tuple flow. By multiplying the number of flows at any
domain, we can obtain the input communication load at
the controller; 2) Output the sampling probability of each
flow at each switch to the peer controllers, the commu-
nication message for each flow at each switch includes
flow identifier, switch ID, sampling probability, result in
the communication load of 20 + 4 + 4 = 28 bytes for
each message exchange. By multiplying the number of
messages, we can obtain the output communication load at
any switch. Adding up the input and output communication
load, we can obtain the total communication load at any
switch. For the DMPS algorithm, controllers exchange the
sampling probability for each flow at each switch along
the route path. Therefore, the message format is: flow
identifier, switch ID, sampling probability, result in the
communication load of 20+4+4=28 bytes for each mes-
sage exchange. By multiplying the number of messages,
we can obtain the communication load at any switch.

� The average processing overhead per-packet in traffic mea-
surement probability distribution. Different solutions may
perform different operations, e.g., hash operation, mem-
ory access, packet-header reading/writing, etc., for flow
distribution. Note that memory access refers to operations

(e.g., lookup and update) on a memory list, e.g., a table
of hash ranges and a bloom filter. It is trivial to consider
all operations together, for different operations leading to
various processing overheads. By testing on our platform
with CPU 3.7 GHz and OVS version 2.5.3 [32], we find
that average processing overheads (e.g., about 10-30 CPU
cycles) of hash operation, and memory access are usually
more than that (e.g., about 1-5 CPU cycles) of packet-head
reading/writing. Thus, we analyze the average number of
hash operations and memory accesses per-packet in flow
traffic measurement load distribution.

� The running time is defined as the time required to solve
the algorithm on controller plane in each benchmark.

B. Simulation Settings

In the simulations, as running examples, we select two typical
and practical topologies for data center networks. The first one
for data center networks is the Fat-tree topology [33], which has
been widely used in many data center networks. The Fat-tree
topology has in total 320 switches (including 128 edge switches,
128 aggregation switches, and 64 core switches) and 1024
terminals. The second topology VL2 [34] is another data center
network topology. The topology VL2 contains 240 switches,
which consists of 20 core switches, 20 aggregation switches
and 200 edge switches. Each edge switch sets up connections
to randomly selected peer edge switches. Considering a multi-
controller scenario, we determine the number of controllers as 8
and 16 for our simulations, and all switches are evenly assigned
to the controllers of the control plane. Besides, we adopt ECMP
for flow routing in both topologies. One commodity server,
which is equipped with 1 Intel Xeon 2.10 GHz CPU (each with
22 physical cores), use 32 K/1024 K/20976 K L1-3 caches. The
server runs a Linux 5.4.0-71-generic distribution. We execute
each simulation 100 times on the server, and take the average of
the numerical results.

C. Experimental Results

The simulation is categorized into two groups. The first group
is to evaluate the impact of simulation setting on the performance
of DMPS in Section VI-C1. The second group is to compare the
performance of DMPS with benchmarks in Section VI-C2, i.e.,
cSamp, NSPA.

1) Setting of Parameter β: Considering the parameter β in
our algorithm (DMPS) defined by the prior knowledge, we
should choose an appropriate parameter β (e.g., 0.3) through
the simulations.

We first observe the impact of parameter β on the number
of iterations, when there are 200 K flows in the network. The
value of parameter β varies in the range of (0.1, 1), and the step
length is set as 0.05. The results in Fig. 5 show that the number
of iterations decreases when parameter β increases to 0.3. When
the value of parameter β is more than 0.3, we find the algorithm
does not converge. We will provide the details in each round of
iteration in Figs. 7–10.

Then, we also show maximum measurement load among all
switches when converging of DMPS under different values of

Authorized licensed use limited to: China Jiliang University. Downloaded on June 06,2024 at 07:58:33 UTC from IEEE Xplore. Restrictions apply.

2458 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 2024

Fig. 5. Maximum number of iterations for DMPS with different values of β
with respect to the number of iterations when there are 200 K flows. Plot (a):
Topology Fat Tree; Plot (b): Topology VL2.

Fig. 6. Maximum measurement load for DMPS with different values of β
with respect to the number of iterations when there are 200 K flows. Plot (a):
Topology Fat Tree; Plot (b): Topology VL2.

Fig. 7. Maximum measurement load of NSPA with different values of β with
respect to the number of iterations when the number of flows are 200 K. Plot (a):
Topology Fat Tree with 8 Controllers; Plot (b): Topology VL2 with 8 Controllers.

Fig. 8. Maximum measurement load of NSPA with different values of β with
respect to the number of iterations when the number of flows are 800 K. Plot (a):
Topology Fat Tree with 8 Controllers; Plot (b): Topology VL2 with 8 Controllers.

Fig. 9. Maximum measurement load of NSPA with different values of β with
respect to the number of iterations when the number of flows are 200 K. Plot
(a): Topology Fat Tree with 16 Controllers; Plot (b): Topology VL2 with 16
Controllers.

Fig. 10. Maximum measurement load of NSPA with different values ofβ with
respect to the number of iterations when the number of flows are 800 K. Plot
(a): Topology Fat Tree with 16 Controllers; Plot (b): Topology VL2 with 16
Controllers.

parameter β in DMPS. The results in Fig. 6 show that small
value of parameter β will result in large maximum measurement
load. The above results keep consistent when the number of
flows changes. Therefore, the optimal setting about the value
of parameter β is 0.3. Besides, since parameter β > 0.3 leads
to the non-convergence of DMPS algorithm, the maximum
measurement load among all switches is not plotted in the figure.

Last, we will take the value (0.1, 0.3, 0.5) of parameter
β as representatives to evaluate the detailed performance of
DMPS during execution under different topologies and different
number of flows in Figs. 7–10. All figures show that the setting
about the value of parameter β as 0.3 can achieve the lowest
maximum measurement load with the fastest convergence speed,
regardless of the network topology, compared to the setting about
the value of parameterβ as 0.1. Moreover, we find that the setting
about the value of parameter β as 0.5 cannot obtain a stable
solution because of the non-convergence of DMPS algorithm
with the parameter setting. The reason is that large value of
parameter β will make the controller be over-fed the sampling
probabilities from neighbor controllers, i.e., the measurement
load from neighbour controllers. Specifically, the plot (a) of
Fig. 7 describes the maximum traffic measurement load among
all switches under the topology Fat Tree with 8 controllers when
there are 200 K flows in the network. When the value of param-
eter β is set as 0.1, the minimum value of the maximum traffic
measurement load is about 1170 after 10 iterations of our DMPS
algorithm. However, only 3 iterations is required to achieve the
minimum value of the maximum traffic measurement load (i.e.,
1120) among all switches, when the value of parameter β is set
as 0.3. As a result, the number of iterations for convergence will
increase with the value of parameter β decreasing from 0.3. We
also conduct the experiments by increasing the number of flows
from 200 K to 800 K and the number of controllers from 8 to
16. The results are consistent and the same conclusion can be
drawn.

2) Comparison Among DMPS, Csamp and NSPA: In the
section, we conduct five sets of simulations to observe the
performance comparison among DMPS, cSamp and NSPA.

The first set of simulations observes the performance of the
maximum traffic measurement load among all switches with
different numbers of flows in Figs. 11–12. The results in both
figures show that the maximum traffic measurement load almost
linearly increase with the number of flows from 200 K to 800 K

Authorized licensed use limited to: China Jiliang University. Downloaded on June 06,2024 at 07:58:33 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: DISTRIBUTED STRATEGY FOR COLLABORATIVE TRAFFIC MEASUREMENT IN A MULTI-CONTROLLER SDN 2459

Fig. 11. Max.Measurement Load vs. Number of Flows. Plot (a): Topology
Fat Tree with 8 Controllers; Plot (b): Topology VL2 with 8 Controllers.

Fig. 12. Max.Measurement Load vs. Number of Flows. Plot (a): Topology
Fat Tree; Plot (a): Topology Fat Tree with 16 Controllers; Plot (b): Topology
VL2 with 16 Controllers.

Fig. 13. Fairness Index vs. Number of Flows. Plot (a): Topology Fat Tree;
Plot (b): Topology VL2.

on both two topologies with different controllers. Specifically,
for the topology Fat Tree with 8 controllers depicted in plot (a) of
Fig. 11, the maximum traffic measurement loads are 3380, 8030
and 3120 with 600 K flows, respectively, when the algorithms
DMPS, NSPA and cSamp are applied for the traffic measurement
load distribution. Moreover, for the topology Fat Tree with 16
controllers depicted in plot (a) of Fig. 12, the maximum traffic
measurement loads are 3700, 8030 and 3120 with 600 K flows,
respectively, when the algorithms DMPS, NSPA and cSamp are
applied for the traffic measurement load distribution. That is,
our proposed DMPS algorithm can achieve a slightly (≈10% on
average) worse performance compared with cSamp in terms of
the traffic measurement load balance. Since the algorithm NSPA
assigns a sampling probability for each switch, our proposed
DMPS algorithm can achieve a much better (at least 100%
on average) performance compared with NSPA in terms of the
traffic measurement load balance.

The second set of simulations observes the fairness index
achieved by our DMPS algorithm under the different numbers
of flows. Fig. 13 shows that the fairness index under a certain
number of controllers can be maintained at almost the same
value, regardless of the number of flows. Specifically, the values
of the fairness index are all about 0.92 and 0.9, when the numbers
of controllers are 8 and 16 in topology Fat Tree with different

Fig. 14. Max.Communication Load vs. Number of Flows. Plot (a): Topology
Fat Tree; Plot (a): Topology Fat Tree with 8 Controllers; Plot (b): Topology
VL2 with 8 Controllers.

Fig. 15. Max.Communication Load vs. Number of Flows. Plot (a): Topology
Fat Tree with 16 Controllers; Plot (b): Topology VL2 with 16 Controllers.

number of flows depicted in the plot (a). Moreover, for the plot
(b) of Fig. 13, the values of the fairness index are all about
0.93 and 0.92, when the numbers of controllers are 8 and 16 in
topology VL2 with different number of flows. We find that
the value of the fairness index increases with the number of
controllers decreasing. The reason is that the algorithm running
on each controller can only make its traffic measurement load
distribution strategy based on the traffic information collected by
itself and its neighbours. What’s more, the number of switches
managed by each controller decreases with the number of con-
trollers, leading to the traffic information collected by each
controller decreasing.

The third set of simulations observes the maximum commu-
nication load among controllers when deploying cSamp, NSPA
and DMPS on them. We vary the number of flows from 200 K to
800 K. The results under different topologies with 8 controllers
are shown in Fig. 14. Moreover, Fig. 15 shows the result under
different topologies with 16 controllers. The results in both
figures show that DMPS is the most lightweight algorithm in
terms of the communication load between two controllers. For
instance, from the plot (a) of Fig. 14, we find that the maximum
communication load of our DMPS algorithm is reduced by
25% at least, compared to the cSamp and NSPA under the
topology Fat Tree with 8 controllers. For the plot (b) of Fig. 14,
the maximum communication load of our DMPS algorithm is
reduced by 20% at least, compared to the cSamp and NSPA
under the topology VL2 with 16 controllers.

The fourth set of simulations observes the running time of
cSamp, NSPA and DMPS, shown in Fig. 16. The results show
that DMPS is faster than cSamp but slightly slower than NSPA.
However, all algorithms can be executed in minutes. Moreover,
we find that the running time of DMPS algorithm only depends
on the number of route path in the network, i.e., the scale of
the network, which makes our DMPS applicable in practical
scenarios.

Authorized licensed use limited to: China Jiliang University. Downloaded on June 06,2024 at 07:58:33 UTC from IEEE Xplore. Restrictions apply.

2460 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 3, MAY/JUNE 2024

Fig. 16. Running Time vs. Number of Flows. Plot (a): Topology Fat Tree;
Plot (b): Topology VL2.

Fig. 17. Per-packet Processing Overhead vs. Operation. Plot (a): Topology
Fat Tree; Plot (b): Topology VL2.

The last set of simulations observes the per-packet processing
overhead in the data plane of cSamp, NSPA and DMPS. Fig. 17
shows the per-packet processing overheads of different algo-
rithms on topology Fat Tree and VL2, respectively. Per-packet
processing overhead mainly includes hash operations and mem-
ory accesses. By the plot (a) of Fig. 17, we observe that cSamp
requiresthe 2.3 times numbers of per-packet hash operations
as NSPA on topology Fat Tree. Similarly, the number is 2.2
on topology VL. For memory access, all algorithms have very
limited number of memory accesses per packet, meaning that
packet-processing in the data plane is lightweight.

From the simulation results in Figs. 7–17, we can make the
following four conclusions. First, by Figs. 11 and 15, NSPA
achieves a slightly worse but comparable performance (≈10%
on average) in terms of the traffic measurement load balancing.
Second, Figs. 14 and 15 show that our NSPA algorithm can
reduce the communication load among controllers drastically,
which makes our solution more practical in applications. Third,
Fig. 16 shows that our NSPA algorithm can achieve lower time
complexity compared to cSamp. Last, Fig. 17 shows that per-
packet processing overhead on each switch is lightweight for
traffic measurement.

VII. CONCLUSION

This paper studies how to perform collaborative traffic mea-
surement in multi-controller SDNs. Our solution proposes a
dedicate lightweight packet processing design in the data plane
to support the collaborative traffic measurement function and
an efficient measurement probability assignment strategy in the
control plane to improve performance of the solution. To the
best of our knowledge, this paper is the first on collaborative
traffic measurement in multi-controller SDNs, We prove the
convergence of the strategy and conduct extensive simulations to
evaluate the performance of the proposed solution with the base-
lines that are modified from the most related works. The results

demonstrate that the proposed solution outperforms baselines
in terms of several metrics including measurement load balance
and communication load.

REFERENCES

[1] S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4, pp. 3–14,
2013.

[2] B. Leng, L. Huang, C. Qiao, H. Xu, and X. Wang, “FTRS: A mechanism
for reducing flow table entries in software defined networks,” Comput.
Netw., vol. 122, pp. 1–15, 2017.

[3] H. Wang, H. Xu, C. Qian, J. Ge, J. Liu, and H. Huang, “PrePass: Load
balancing with data plane resource constraints using commodity sdn
switches,” Comput. Netw., vol. 178, 2020, Art. no. 107339.

[4] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Scotch: Elastically
scaling up SDN control-plane using vSwitch based overlay,” in Proc. 10th
ACM Int. Conf. Emerg. Netw. Experiments Technol., 2014, pp. 403–414.

[5] H. Xu, H. Huang, S. Chen, and G. Zhao, “Scalable software-defined
networking through hybrid switching,” in Proc. IEEE Conf. Comput.
Commun., 2017, pp. 1–9.

[6] A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B. Prabhakar, “AF-
QCN: Approximate fairness with quantized congestion notification for
multi-tenanted data centers,” in Proc. 18th IEEE Symp. High Perform.
Interconnects, 2010, pp. 58–65.

[7] P. Garcia-Teodoro, J. Diaz-Verdejo, G. Maciá-Fernández, and E. Vázquez,
“Anomaly-based network intrusion detection: Techniques, systems and
challenges,” Comput. Secur., vol. 28, no. 1/2, pp. 18–28, 2009.

[8] H. Wang, C. Ma, O. O. Odegbile, S. Chen, and J.-K. Peir, “Randomized
error removal for online spread estimation in data streaming,” Proc. VLDB
Endowment, vol. 14, no. 6, pp. 1040–1052, 2021.

[9] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined networking (SDN)
and distributed denial of service (DDOS) attacks in cloud computing
environments: A survey, some research issues, and challenges,” IEEE
Commun. Surveys Tuts., vol. 18, no. 1, pp. 602–622, Jan.–Mar. 2016.

[10] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic
anomalies,” ACM SIGCOMM Comput. Commun. Rev., vol. 34, no. 4,
pp. 219–230, 2004.

[11] H. Wang, C. Ma, O. O. Odegbile, S. Chen, and J.-K. Peir, “Random-
ized error removal for online spread estimation in high-speed networks,”
IEEE/ACM Trans. Netw., vol. 31, no. 2, pp. 558–573, Apr. 2023.

[12] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering in
software defined networks,” in Proc. IEEE INFOCOM, 2013, pp. 2211–
2219.

[13] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S.
Banerjee, “DevoFlow: Scaling Flow Management for High-Performance
Networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no. 4,
pp. 254–265, 2011.

[14] J. Sommers, P. Barford, N. Duffield, and A. Ron, “Accurate and efficient
SLA compliance monitoring,” in Proc. Conf. Appl. Technol. Architectures
Protoc. Comput. Commun., 2007, pp. 109–120.

[15] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[16] G. Cormode and S. Muthukrishnan, “What’s new: Finding significant
differences in network data streams,” IEEE/ACM Trans. Netw., vol. 13,
no. 6, pp. 1219–1232, Dec. 2005.

[17] X. Yu, H. Xu, D. Yao, H. Wang, and L. Huang, “CountMax: A lightweight
and cooperative sketch measurement for software-defined networks,”
IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2774–2786, Dec. 2018.

[18] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and D.
G. Andersen, “CSAMP: A system for network-wide flow monitoring,”
in Proc. 5th USENIX Symp. Netw. Syst. Des. Implementation, 2008,
pp. 233–246.

[19] Y. Yu, C. Qian, and X. Li, “Distributed and collaborative traffic monitoring
in software defined networks,” in Proc. 3rd Workshop Hot Topics Softw.
Defined Netw., 2014, pp. 85–90.

[20] H. Xu, S. Chen, Q. Ma, and L. Huang, “Lightweight flow distribution for
collaborative traffic measurement in software defined networks,” in Proc.
IEEE Conf. Comput. Commun., 2019, pp. 1108–1116.

[21] Y. Cui, S. Dong, and W. Liu, “Feature selection algorithm based on
correlation between muti metric network traffic flow features.,” Int. Arab
J. Inf. Technol., vol. 14, no. 3, pp. 362–371, 2017.

Authorized licensed use limited to: China Jiliang University. Downloaded on June 06,2024 at 07:58:33 UTC from IEEE Xplore. Restrictions apply.

YAO et al.: DISTRIBUTED STRATEGY FOR COLLABORATIVE TRAFFIC MEASUREMENT IN A MULTI-CONTROLLER SDN 2461

[22] H. Wang, H. Xu, L. Huang, J. Wang, and X. Yang, “Load-balancing routing
in software defined networks with multiple controllers,” Comput. Netw.,
vol. 141, pp. 82–91, 2018.

[23] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proc. Internet Netw. Manage. Conf. Res. Enterprise
Netw., vol. 3, 2010, pp. 10–5555.

[24] T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. USENIX Conf. Operating Syst. Des. Im-
plementation, 2010, pp. 1–6.

[25] P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in Proc.
3rd Workshop Hot Topics Softw. Defined Netw., 2014, pp. 1–6.

[26] D. E. Sarmiento, A. Lebre, L. Nussbaum, and A. Chari, “Decentralized
SDN control plane for a distributed cloud-edge infrastructure: A survey,”
IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 256–281, Jan.–Mar. 2021.

[27] H. Yin, H. Xie, T. Tsou, D. Lopez, P. Aranda, and R. Sidi, “SDNi: A
message exchange protocol for software defined networks (SDNs) across
multiple domains,” Internet Draft, Internet Eng. Task Force, Jun. 2012.
[Online]. Available: http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt

[28] P. Lin, J. Bi, and Y. Wang, “WEBridge: West–east bridge for distributed
heterogeneous SDN noses peering,” Secur. Commun. Netw., vol. 8, no. 10,
pp. 1926–1942, 2015.

[29] P. N. D. Bukh, The Art of Computer Systems Performance Analysis, Tech-
niques for Experimental Design, Measurement, Simulation and Modeling.
Noida, India: Wiley, 1992.

[30] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “SIMPLE-
fying middlebox policy enforcement using SDN,” in Proc. ACM SIG-
COMM Conf., 2013, pp. 27–38.

[31] R. Bhatia, F. Hao, M. Kodialam, and T. Lakshman, “Optimized network
traffic engineering using segment routing,” in Proc. IEEE Conf. Comput.
Commun., 2015, pp. 657–665.

[32] “Openvswitch,”, 2017. Accessed: Sep. 1, 2017, [Online]. Available: http:
//openvswitch.org/

[33] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63–74, 2008.

[34] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies with
rocketfuel,” ACM SIGCOMM Comput. Commun. Rev., vol. 32, no. 4,
pp. 133–145, 2002.

Da Yao received the B.S. degree in software engineer-
ing from the Dalian University of Technology, Dalian,
China, in 2013. He is currently working toward the
Ph.D. degree in computer science with the University
of Science and Technology of China, Hefei, China.
His main research interests include software-defined
networks and traffic measurement.

Qianpiao Ma received the B.S. degree in com-
puter science and the Ph.D. degree in computer soft-
ware and theory from the University of Science and
Technology of China, Hefei, China, in 2014 and
2022, respectively. He is currently a Postdoctoral
Researcher with Purple Mountain Laboratories, Nan-
jing, China. His primary research interests include
federated learning, mobile edge computing and dis-
tributed machine learning.

Haibo Wang received the Ph.D. degree in computer
science from the University of Florida, Gainesville,
FL, USA, the B.E. and Masters degrees in computer
science from the University of Science and Tech-
nology of China, Hefei, China, in 2016 and 2019,
respectively. He is currently an Assistant Professor
with the Department of Computer Science, University
of Kentucky, Lexington, KY, USA. His main research
interests include internet traffic measurement, big
data analytics, software defined networks, and In-
ternet of Things. He was the recipient of the IEEE

ICNP2021 best paper award.

Min Chen (Graduate Student Member, IEEE) re-
ceived the B.S. degree in software engineering from
the Xi’an Jiaotong University, Xi’an, China, in 2018.
He is currently working toward the Ph.D. degree
with the School of Computer Science and Technol-
ogy, University of Science and Technology of China,
Hefei, China. His research interests include mobile
edge computing, distributed machine learning, and
cloud computing.

Hongli Xu (Member, IEEE) received the B.S. degree
in computer science and the Ph.D. degree in computer
software and theory from the University of Science
and Technology of China, Hefei, China, in 2002 and
2007, respectively. He is currently a Professor with
the School of Computer Science and Technology,
University of Science and Technology of China. He
has authored or coauthored more than 100 papers
in famous journals and conferences, which include
the IEEE/ACM TRANSACTIONS ON NETWORKING,
IEEE TRANSACTIONS ON MOBILE COMPUTING, IEEE

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, Infocom and ICNP.
He has also held more than 30 patents. His main research interests include
software defined networks, edge computing and Internet of Thing. He was the
recipient of the Outstanding Youth Science Foundation of NSFC, in 2018. He
has won the best paper award or the best paper candidate in several famous
conferences.

Authorized licensed use limited to: China Jiliang University. Downloaded on June 06,2024 at 07:58:33 UTC from IEEE Xplore. Restrictions apply.

http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt
http://openvswitch.org/
http://openvswitch.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

